



# The Representation Groups and Projective Representations of the Point Groups and their Applications

L. L. Boyle and Kerie F. Green

*Phil. Trans. R. Soc. Lond. A* 1978 **288**, 237-269 doi: 10.1098/rsta.1978.0017

**Email alerting service** 

MATHEMATICAL, PHYSICAL & ENGINEERING

THE ROYAI

**PHILOSOPHICAL TRANSACTIONS** 

MATHEMATICAL, PHYSICAL & ENGINEERING

THE ROYAL

PHILOSOPHICAL TRANSACTIONS Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click **here** 

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

[ 237 ]

## THE REPRESENTATION GROUPS AND PROJECTIVE REPRESENTATIONS OF THE POINT GROUPS AND THEIR APPLICATIONS

By L. L. BOYLE AND KERIE F. GREEN<sup>†</sup> University Chemical Laboratory, Canterbury, Kent, England

(Communicated by M. A. Grace, F.R.S. – Received 30 September 1976)

|    | CONTENTS                                                                          | PAGE       |
|----|-----------------------------------------------------------------------------------|------------|
| 1. | Introduction                                                                      | 237        |
| 2. | Representation groups and multiplicators                                          | 283        |
| 3. | DETERMINATION OF THE MULTIPLICATORS                                               | 239        |
| 4. | DETERMINATION OF THE REPRESENTATION GROUPS                                        | <b>241</b> |
| 5. | CHARACTER TABLES OF THE REPRESENTATION GROUPS                                     | <b>243</b> |
| 6. | Ascent and descent in symmetry                                                    | 260        |
| 7. | The symmetrized powers of projective representations                              | 265        |
| 8. | Applications                                                                      | 265        |
|    | 8.1. Derivation of the double-valued representations of the point groups          | 265        |
|    | 8.2 Derivation of the single-valued, double-valued and projective representations |            |
|    | of the space groups                                                               | 267        |
| R  | EFERENCES                                                                         | 269        |

The different representation groups of the point groups are established and their character tables presented. These enable one to construct equivalent alternative sets of projective representations, as well as to provide an easy route to the determination of double group and space group representations. It is shown that these are uniquely determined, independent of the choice of representation group, but the availability of alternative representation groups allows greater scope for the processes of ascent and descent in symmetry, which are quite restricted in the context of projective representations.

#### 1. INTRODUCTION

Recently (Döring 1956; Hurley 1966; Bradley & Cracknell 1972; Janssen 1973; Mozyrzymas 1975), interest has been shown in the projective representations of the point groups because of their value in facilitating the determination of the representations of the non-symmorphic space groups. We have found, however, that due to theoretical ambiguities in some of the methods used, none of the sets of character tables published so far is error-free. We have also found that the character systems of the projective representations are not always unique and have investigated

† Née Smith.

16

Vol. 288. A 1351.

[Published 14 February 1978



SICAL

THE ROYAL

PHILOSOPHICAL **FRANSACTIONS** 

#### L. L. BOYLE AND KERIE F. GREEN

the applicability of the different possibilities. We shall follow a logical approach based on Schur's original prescription which fully investigates the representation groups rather than choosing suitable factor systems.

#### 2. Representation groups and multiplicators

Schur (1904) defined a representation group,  $\mathscr{R}$ , of a group G, as an abstract group possessing an invariant subgroup, called the multiplicator M, which is contained in both the centre, Z, and the commutator subgroup,  $\mathscr{K}$ , of  $\mathscr{R}$  such that the factor group  $\mathscr{R}/M$  is isomorphic to G and the order of M is as small as possible without being trivial, unless no non-trivial possibilities exist. The order of  $\mathscr{R}$  is therefore the product of the orders of G and M. The mapping of  $\mathscr{R}$  onto  $\mathscr{R}/M$  is a canonical epimorphism with kernel M and image  $\mathscr{R}/M$ , since it maps the elements of  $\mathscr{R}$  onto the elements of a group whose elements are cosets. Since  $\mathscr{R}/M$  is isomorphic to G, there is an epimorphism,  $\pi$ , from  $\mathscr{R}$  onto G.

A representation group is therefore a central extension of M by G. It is not necessarily unique although M is unique for a given group G. It cannot be a supergroup of G and hence cannot be written as a direct or semi-direct product structure involving G and M.

If one extends the concept of a representation of a group G of elements  $\{g_i\}$  to allow a multiplication law for the representative matrices,  $\delta$ , of the form

$$\delta(g_i) \,\delta(g_j) = \omega(g_i, g_j) \,\delta(g_i g_j)$$

where the factor systems  $\omega(g_i, g_j)$  are complex numbers of unit modulus, then it can be shown by the following argument that the true (or vector) representations of  $\mathscr{R}$  correspond to either vector or generalized (or projective, or ray) representations of G. A representative matrix  $\Delta(r_i)$  of  $\mathscr{R}$  is also a representative matrix  $\delta(\pi r_i)$  of G since the epimorphism  $\pi$  maps the element  $r_i$  of  $\mathscr{R}$  onto the element  $\pi r_i$  of G. Since  $\Delta$  is a true representation of  $\mathscr{R}$ , the product of the representative matrices of two elements,

$$\Delta(r_i)\,\Delta(r_j)=\Delta(r_i\,r_j),$$

the representative matrix of the product of the elements. But we also have

$$\Delta(r_i) \Delta(r_j) = \delta(\pi r_i) \delta(\pi r_j)$$
  
=  $\delta(\pi r_i r_j),$ 

the representative matrix of an element of G. Hence

$$\Delta(r_i r_j) = \delta(\pi r_i r_j)$$

and therefore  $\Delta$  is also a representation of G.

Now let  $r_k$  be that element of  $\mathscr{R}$  such that  $\pi r_k = g_k$ . Because the mapping of the product of two elements,

$$\pi(r_k r_l) = (\pi r_k) (\pi r_l) = g_k g_l = g_{kl} = \pi r_{kl},$$

the mapping of another element, it follows that  $\pi(r_k r_k^{-1} r_l^{-1}) = e$ , the identity of G. This is satisfied if

$$r_k r_l = m_{kl} r_{kl},$$

where  $m_{kl}$  is an element of M which lies in the commutator subgroup K of G and which commutes with all elements of  $\mathcal{R}$ . Hence the representative matrices of M must commute with all repre-

IATHEMATICAL, HYSICAL ENGINEERING

THE ROYAL SOCIETY

**PHILOSOPHICAL TRANSACTIONS** 

#### REPRESENTATIONS OF POINT GROUPS

sentative matrices of  $\mathscr{R}$  in a given irreducible representation,  $\varDelta$ , and hence by Schur's lemma must be multiples,  $\omega$ , of the unit matrix. Hence the product of two representative matrices,

$$\Delta(\mathbf{r}_i)\,\Delta(\mathbf{r}_j) = \Delta(\mathbf{r}_i\,\mathbf{r}_j) = \Delta(\mathbf{m}_{ij}\,\mathbf{r}_{ij}) = \omega(\mathbf{r}_i\,\mathbf{r}_j)\,\Delta(\mathbf{r}_{ij}),$$

a unit multiple of another representative matrix, and since

$$\Delta(r_i) = \delta(g_i),$$

we have

$$\delta(g_i)\,\delta(g_j) = \omega(g_i, g_j)\,\delta(g_i g_j)$$

and therefore  $\delta$  is a projective representation of G.

Two projective representations,  $\delta$  and  $\delta'$ , are said to be associated if  $\delta(g_i) = u(g_i) \, \delta'(g_i)$ , where  $u(g_i) \neq 0$  is a complex number of unit modulus. To these correspond associated factor systems  $\omega$  and  $\omega'$  which together with all other factor systems associated to them form a multiplicative Abelian group,  $B^2(G)$  of associated factor systems. This is an invariant subgroup of the group of all factor systems  $Z^2(G)$ . The factor group  $Z^2(G)/B^2(G)$  is isomorphic to  $H^2(G)$ , the group of all classes of associated factor systems are those two-dimensional co-chains which are two-dimensional co-cycles, the sets of associated factor systems are those two-dimensional co-chains which are two-dimensional co-cycles, the sets of some one-dimensional co-chains and  $H^2(G)$  is the second cohomology group of extensions of G by M.

#### 3. DETERMINATION OF THE MULTIPLICATORS

The multiplicators of the point groups are most efficiently determined by an *aufbau* process starting with the cyclic groups, namely  $C_n$ ,  $S_{2n}$  and  $C_{(2n-1)h}$ . These are single generator groups and are hence Abelian. Their representation groups are hence also single generator groups, also Abelian and therefore have commutator subgroups,  $C_1$ . Since the multiplicator must be contained in the commutator subgroups of the representation groups, the multiplicators of the cyclic groups must all be  $C_1$  and therefore the representation group coincides with the original group and there are no projective representations.

The multiplicators of the dihedral groups  $D_{2n+1}$  of order 4n + 2 and hence also  $C_{(2n+1)v}$  ( $\cong D_{2n+1}$ ) may be determined by theorem v of Schur (1907). This is because all of their Sylow subgroups are cyclic and hence the order of their multiplicator is divisible by no prime number greater than 1. Their multiplicator is hence  $C_1$ .

For groups of the family  $D_{4n} (\cong C_{4nv} \cong D_{2nd})$ , non-trivial multiplicators can be found and it will be sufficient to show that one representation group of twice their order exists to prove that the multiplicators are all  $C_2$ . The double groups  $D'_{4n}$  are known to have the property  $D'_{4n}/C'_1 \cong D_{4n}$ since they are central extensions of  $C'_1$  by  $D_{4n}$  and since their commutator is  $C'_n$ ,  $C'_1 (\cong C_2)$  is a possible multiplicator. Since this group is of the minimal non-trivial order, the multiplicator must be isomorphic to the abstract group  $C_2$  for *all* possible representation groups.

The Vierergruppe,  $D_2 \cong C_{2v} \cong C_{2h}$  will be the first example of a direct product group. To apply theorem v1 of Schur (1907),  $D_2$  is factorized as  $C_2 \times C_2$  and the quotient group is formed of each factor with its own commutator subgroup, namely  $C_2/C_1 \cong C_2$  for each factor. The orders of these quotient groups are then factorized into primes and the highest common factors (hcf) of all possible pairs of prime factors corresponding to different quotient groups are multiplied together.  $\mathbf{240}$ 

#### L. L. BOYLE AND KERIE F. GREEN

The multiplicator of  $D_2$  is then given as

$$M(D_2) \cong M(C_2) \times M(C_2) \times C_{\operatorname{hcf}(2, 2)}$$
$$\cong C_1 \times C_1 \times C_2$$
$$\simeq C_2.$$

The multiplicators of the tetrahedral, octahedral and icosahedral rotational groups, T, O and I respectively, may now be determined by theorem v of Schur (1907) since, apart from cyclic groups of odd order, their Sylow subgroups are respectively  $D_2$ ,  $D_4$  and  $D_2$ . These all have multiplicators isomorphic to  $C_2$  and hence if T, O and I are to have non-trivial multiplicators, these must all be isomorphic to  $C_2$ . The multiplicator of the regular tetrahedral group,  $T_d$ , must also be isomorphic to  $C_2$  since  $T_d$  is isomorphic to O.

All remaining point groups can be regarded as direct product groups:

$$C_{2nh} \cong C_{2n} \times C_2,$$

$$D_{4n+2} \cong C_{(4n+2)v} \cong D_{(2n+1)d} \cong D_{(2n+1)h} \cong D_{2n+1} \times C_2,$$

$$D_{2nh} \cong D_{2n} \times C_2,$$

$$T_h \cong T \times C_2,$$

$$O_h \cong O \times C_2,$$

$$I_h \cong I \times C_2,$$

and hence their multiplicators can be determined using theorem VI of Schur (1907).

Finally the spherical rotation group, K, is known to have a double group, K' such that

$$K'/C'_1 \cong K.$$

This obeys the requirements for a representation group and hence the multiplicator is determined to be isomorphic to  $C_2$ . Further, since the commutator of K is K, the double group is the only representation group of K, in accordance with theorem II of Schur (1907). The spherical group relevant to atoms is  $K_h = K \times S_2$  and contains reflexion planes and the inversion. This is a direct product group and hence by theorem VI of Schur (1907) its multiplicator is also isomorphic to  $C_2$ .

The use of the above determination of the multiplicator as a means of finding the second cohomology group is a labour-saving method for those problems involving the extension of a group by its multiplicator and is far simpler than direct application of cohomology theory.

The results may be summarized as follows.

$$\begin{array}{lll} \mbox{multiplicator} & \mbox{point groups} \\ \hline C_1 & C_n, S_{2n}, C_{(2n-1)h}, D_{2n+1}, C_{(2n+1)v} \\ C_2 & C_{2nh}, C_{2nv}, D_{2n}, D_{nd}, D_{(2n+1)h}, T, T_d, T_h, O, I, I_h, K, K_h \\ \hline C_2 \times C_2 & O_h \\ C_2 \times C_2 \times C_2 & D_{2nh} \end{array}$$

It might be mentioned that although it is the case for the point groups that the multiplicators are isomorphic to  $C_1$  or products of  $C_2$ , multiplicators of other types can appear, e.g. if p is a prime number, the multiplicator of the direct product group  $C_p \times C_p$  (used in describing molecules exhibiting internal rotation) is isomorphic to  $C_p$ .

#### REPRESENTATIONS OF POINT GROUPS

#### 4. DETERMINATION OF THE REPRESENTATION GROUPS

The determination of the representation groups is usefully preceded by the determination of the maximum possible number of such groups using theorem I and II of Schur (1907). To apply these theorems we need to know the multiplicators, M, determined in the preceding section and the commutator subgroups, K, of the point groups, G, themselves. The quotient groups G/K, which are necessarily Abelian, are then factorized in terms of cyclic groups  $C_{e_1} \times C_{e_2} \times C_{e_3} \times \ldots$ , where the orders  $e_1, e_2, \ldots$  are the integers referred to by Schur as the invariants of the quotient group. The multiplicator is likewise factorized and its invariants may be denoted as  $e_1, e_2, \ldots$ . Schur (theorem I) then proved that an upper bound to the number of representation groups,  $n_{\max}$ , was given by the product of all possible highest common factors of the type hcf  $(e_i, e_j)$ . When G is a complete group, for example the groups  $T_a$  and O, this upper bound is the actual number, n. When K = G, as is the case for the point groups I and K, there can only be one representation group (theorem II of (1907) and theorem IV of (1904)) independent of the multiplicator. The results may be summarized in the following table:

| TABLE 1. THE C | COMMUTATOR S | UBGROUPS, | MULTIPLICAT | ORS AND | NUMBERS | OF |
|----------------|--------------|-----------|-------------|---------|---------|----|
| RE             | PRESENTATION | GROUPS O  | F THE POINT | GROUPS  |         |    |

| G                                                 | Κ                | G K                         | M                           | $n_{\max}$ | n                                               |
|---------------------------------------------------|------------------|-----------------------------|-----------------------------|------------|-------------------------------------------------|
| $C_{2n-1}$                                        | $C_1$            | $C_{2n-1}$                  | $C_1$                       | 1          | 1                                               |
| $C_{2n}$ , $S_{2n}$ , $C_{nh}$ (n odd)            | $\hat{C_1}$      | $C_{2n}^{n}$                | $\vec{C_1}$                 | 1          | 1                                               |
| $D_{2n-1}, C_{(2n-1)v}$                           | $\bar{C_{2n-1}}$ | $C_2^{-1}$                  | $C_1$                       | 1          | 1                                               |
| $C_{2nh}$                                         | $C_1$            | $C_{2n} \times C_2$         | $C_2$                       | 4          | <b>2</b>                                        |
| $D_{2n}, C_{2nv}, D_{nd}, D_{nh} (n \text{ odd})$ | $C_n$            | $C_2 \times C_2$            | $C_2$                       | 4          | $\begin{cases} 2(n=1)\\ 3(n\neq 1) \end{cases}$ |
| $D_{2nh}$                                         | $C_n$            | $C_2 \times C_2 \times C_2$ | $C_2 \times C_2 \times C_2$ | 512        | $\begin{cases} 1(n=1)\\ 2(n\neq 1) \end{cases}$ |
| T                                                 | $D_2$            | $C_3$                       | $C_2$                       | 1          | 1                                               |
| $T_d, O$                                          | T                | $C_2$                       | $C_2$                       | <b>2</b>   | <b>2</b>                                        |
| $T_h$                                             | $D_2$            | $C_2 \times C_3$            | $C_2$                       | <b>2</b>   | <b>2</b>                                        |
| $O_h$                                             | T                | $C_2 \times C_2$            | $C_2 \times C_2$            | 16         | 4                                               |
| Ι                                                 | Ι                | $C_1$                       | $C_2$                       | 1          | 1                                               |
| I <sub>h</sub>                                    | Ι                | $C_2$                       | $C_2$                       | <b>2</b>   | <b>2</b>                                        |
| K                                                 | Κ                | $C_1$                       | $C_2$                       | 1          | 1                                               |
| $K_h$                                             | Κ                | $C_2$                       | $C_2$                       | 2          | 2                                               |

The determination of the actual number, n, of non-isomorphic representation groups of a given group, G, requires an examination of the  $n_{\max}$  possibilities to see if they lead to groups and then what isomorphisms exist between them. This process can be facilitated by considering first the representation groups of groups which can be specified by two generators and then using these as a basis in a composition series for considering those groups which must be specified by three or four generators and then stepwise to those groups which are conveniently specified by four or five generators.

Let us consider a group G specified by two generators A and B such that  $A^l = B^m = E$  and  $BA = A^x B^y$ . A representation group  $\mathscr{R}$  for G must be specifiable in terms of two generators, P and Q such that  $P^{\lambda} = Q^{\mu} = E$  and  $QP = P^{\xi}Q^{\eta}$ . The order of G is lm sincefor all point groups in question  $A^{\frac{1}{2}l} = B^{\frac{1}{2}m}$  and hence the order required for  $\mathscr{R}$  is 2lm since the multiplicator for all two-generator point groups is of order 2. Hence, if  $P^{\frac{1}{2}\lambda} \neq Q^{\frac{1}{2}\mu}$ ,  $2lm = \lambda\mu$  i.e.  $\lambda = 2l$ ,  $\mu = m$  or  $\lambda = l$ ,  $\mu = 2m$ . If, however,  $P^{\frac{1}{2}\lambda} = Q^{\frac{1}{2}\mu}$ , then  $2lm = \frac{1}{2}\lambda\mu$  i.e.  $\lambda = 2l$ ,  $\mu = 2m$ . (Cases such as  $\lambda = 4l$ ,  $\mu = m$  are

241

**PHILOSOPHICAL TRANSACTIONS** 

#### L. L. BOYLE AND KERIE F. GREEN

excluded since these would not correspond to a multiplicator of order 2.) Considering now the relation  $BA = A^x B^y$ , the corresponding relation  $QP = P^{\xi}Q^{\eta}$  in the representation group can permit different combinations of values of  $\xi$  and  $\eta$  according to the values of  $\lambda$  and  $\mu$ . The results can be summarized as follows:

|           |                           |                       |                      |                                                      | commutator                                       | rs of $\mathscr{R}$                                                                      |
|-----------|---------------------------|-----------------------|----------------------|------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------|
| label     | generating r              | elations in <i>R</i>  | multiplicator        | $\mathscr{K}\begin{pmatrix} x=1\\ y=1 \end{pmatrix}$ | $\mathscr{K}\begin{pmatrix} x\\ y \end{pmatrix}$ | $ = 2n - 1 \\ = 1 $                                                                      |
| $ ho_{1}$ | $P^{2l} = Q^m = E$        | $QP = P^x Q^y$        | $\{E, P^i\}$         | E                                                    | n even:<br>n odd:                                | $P^{2l} = E$ $(P^4)^{\frac{1}{2}l} = E$                                                  |
| $ ho_2$   | $P^{2l} = Q^m = E$        | $QP = P^{x+l}Q^y$     | $\{E, P^{l}\}$       | $(P^2)^l = E$                                        | $P^{2l} = E$                                     |                                                                                          |
| $ ho_3$   | $P^{\imath} = Q^{2m} = E$ | $QP = P^x Q^y$        | $\{E, Q^m\}$         | E                                                    | $P^{i} = E$                                      |                                                                                          |
| $ ho_4$   | $P^{l} = Q^{2m} = E$      | $QP = P^x Q^{y+m}$    | $\{E, Q^m\}$         | $(Q^2)^m = E$                                        | n even:<br>n odd:                                | $\begin{array}{l} (P^2Q^2)^l = E \\ P^l = (Q^2)^2 = E; \\ Q^2P = P^{l-1}Q^2 \end{array}$ |
| $ ho_5$   | $P^{2l} = Q^{2m} = E$     | $QP = P^x Q^y$        | $\{E, P^l = Q^m\}$   | E                                                    | n even:<br>n odd:                                | $P^{2l} = E$ $(P^4)^{\frac{1}{2}l} = E$                                                  |
| $ ho_{6}$ | $P^{2l} = Q^{2m} = E$     | $QP = P^{x+l}Q^y$     | $\{E, P^{i}=Q^{m}\}$ | $(P^2)^l = E$                                        | $P^{2l} = E$                                     |                                                                                          |
| $ ho_7$   | $P^{2l} = Q^{2m} = E$     | $QP = P^x Q^{y+m}$    | $\{E, P^l = Q^m\}$   | $(P^2)^l = E$                                        | $P^{2l} = E$                                     |                                                                                          |
| $ ho_8$   | $P^{2l} = Q^{2m} = E$     | $QP = P^{x+l}Q^{y+m}$ | $\{E, P^l = Q^m\}$   | Ε                                                    | n even: $n$ odd:                                 | $P^{2l} = E$ $P^{2l-4} = E$                                                              |

Of the eight possibilities it may be noted that  $\rho_5 = \rho_8$  and  $\rho_6 = \rho_7$  since for these groups the invariant element  $P^l = Q^m$ . Among the relevant point groups, we always have y = 1 and either x = 1 (for the  $C_{2nh}$  family) or x = 2n - 1 (for the  $D_{2n}$  family). For these two cases, the generating relations of the commutator subgroups of the representation groups are listed. Comparison with the elements of the multiplicator shows that for the  $C_{2nh}$  groups,  $\rho_2$  and  $\rho_6$  are possible representation groups when l is even which is the case since l = 2n, and  $\rho_4$  is a representation group when m is even, which is satisfied since m = 2 for the  $C_{2nh}$  point groups. In fact  $\rho_2$  and  $\rho_6$  are isomorphic since different choices of generators will lead to the two different formulations of the group. There are thus only two different representation groups for each group of the  $C_{2nh}$  family.

In the case of the  $D_{2n}$  groups, comparison of commutator subgroups and multiplicators shows that when n is even,  $\rho_1$ ,  $\rho_2$ ,  $\rho_5$  and  $\rho_6$  are possible representation groups while when n is odd,  $\rho_2$ ,  $\rho_4$  and  $\rho_6$  are the possible representation groups. Detailed examination of the structure of these groups shows that when n is even,  $\rho_5$  is isomorphic to  $\rho_1$  and hence there will be three representation groups, albeit of different types, for each value of  $n \neq 1$ . When n = 1,  $\rho_4 = \rho_2$  and so there are then only two non-isomorphic representation groups, namely  $\rho_2$  and  $\rho_6$ .

This approach may be extended to the remaining point groups by considering the following composition series in which each group is a normal subgroup of the following group so that by addition of one generator and a specification of its multiplicative properties with the other generators, one can arrive at the next group in the series:

$$\begin{split} D_2 &\to T \to T_h \\ D_2 &\to T \to O (\cong T_d) \to O_h \\ D_2 &\to T \to I \to I_h \end{split}$$

The derivation of the representation groups for the cubic and icosahedral point groups was straightforward, even for the case of  $O_h$  where the multiplicator was of increased order. The groups of the family  $D_{2nh}$ , however, where the multiplicator is of order 8 required an approach similar to

#### REPRESENTATIONS OF POINT GROUPS

that for two generators. It was found that of Schur's 512 possibilities only 64 need be considered *a priori*, of which only 14 satisfied the conditions relating the commutators and multiplicators. Of these 14 possibilities it turned out that for any given group of the  $D_{2nh}$  (n > 1) family, only two non-isomorphic representation groups could be found while for  $D_{2h}$  itself there was only one possible representation group.

It has already been mentioned in the determination of the multiplicators of the spherical groups that the double group K' is a representation group for the rotation group K and this must be the only such group. The double group  $K'_h$  is one representation group of  $K_h$ , the second being one in which a non-invariant four-fold element and its inverse map onto the inversion.

The actual numbers, n, of representation groups may be found collected in table 1.

#### 5. CHARACTER TABLES OF THE REPRESENTATION GROUPS

The following character tables of the representation groups are listed here for the first time. These supersede all previous compilations of projective representations, either because earlier tables do not list more than one possible set of projective representations (Döring 1956; Hurley 1966) or, additionally, they contain demonstrable errors (e.g. the  $D_{2\hbar}$  tables of Janssen (1973) and Mozyrzymas (1975)), usually in an incorrect specification of the sign of some characters. The advantage of using the full representation group rather than a set of characters of the projective representations of the point group is that  $\Re$  is a genuine group and hence operations involving the projective representations, such as symmetrization of powers, can be performed without need for any additional algebraic formulations. The tables are also useful as they contain all central extensions of G by M and hence may assist in physical problems where group extensions are needed as well as enlarging the categories of abstract groups for which character tables are available.

5, 6, 8, 12}-dimensional representations are denoted by the letters  $\{A, E, T, G, H, I, K, O\}$  of the Mulliken-Placzek system irrespective of whether the degeneracy is separable (Frobenius & Schur 1906) or not. The complex conjugate components of separably degenerate representations have been denoted by the superscripts + and -. The elements of the multiplicator, M, have been placed at the beginning and, since they coincide with the centre of the representation group, their characters are  $\pm$  those for the identity element. The vector representations have positive characters for all elements of the multiplicator, while the projective representations have half of these characters positive and half negative. The different classes of representations have been called  $\omega$ -representations by Bradley & Backhouse (1970) and are denoted by subscripts  $\alpha$ ,  $\beta$ ,  $\alpha\beta$ , etc. (except for those groups with multiplicator  $C_2$  where the well-known double group is a representation group: in such cases the double-valued representations denoted by half-integral subscripts are the projective or  $\alpha$ -representations). The elements of the representation group have been described in terms of generators P, Q, R, ... and the elements of the point group (described in terms of generators A, B, C, ...) to which these correspond are indicated in the relevant columns below the characters. The composition of a class has been denoted by a symbol of type  $X\epsilon_x$  which means that it contains X elements of order x. The relations between the generators for both  $\mathcal{R}$  and G have been collected on the right-hand side. Where feasible, inverse pairs of elements have been collected on the same horizontal line and, when in the same class, are separated by commas. Elements separated by semi-colons are not inverses.

#### L. L. BOYLE AND KERIE F. GREEN

The abstract generators of the point groups may be identified by means of table 2.

It may be mentioned that not only do these tables contain the first correct characters for the projective representations of  $D_{2h}$  but also they consider the icosahedral groups for the first time.

TABLE 2. IDENTIFICATION OF THE GENERATING ELEMENTS OF THE POINT GROUPS WITH THE ABSTRACT GENERATORS DERIVED BY MAPPING FROM THE REPRESENTATION GROUPS

| G             | A                  | В                 | С                      | D                            | F                                                      | Ι     |
|---------------|--------------------|-------------------|------------------------|------------------------------|--------------------------------------------------------|-------|
| $C_{2nh}$     | $C_{2n}$           | $\sigma_h$        |                        |                              |                                                        |       |
| $C_{2nv}$     | $C_2$              | $\sigma_v$        |                        |                              |                                                        |       |
| $D_{2n}$      | $C_{2n}$           | $C'_2$            |                        |                              |                                                        |       |
| $D_{nd}$      | $S_{2n}$           | $\sigma_{d}$      |                        |                              |                                                        |       |
| $D_{(2n+1)h}$ | $S_{2n+1}$         | $\sigma_v$        |                        |                              |                                                        |       |
| $D_{2nh}$     | $C_{2n}$           | $\sigma_v$        | $\sigma_h$             |                              |                                                        |       |
| 1             | $C_2^z$            | $C_2^x$           | $C_{3}^{xyz}$          |                              |                                                        |       |
| $T_h$         | $C_2^z$            | $C_2^x$           | $C_3^{xyz}$            |                              |                                                        | $S_2$ |
| $T_d$         | $C_2^z$            | $C_2^{\tilde{x}}$ | $C_3^{xyz}$            | $\sigma_{d}$                 |                                                        | -     |
| 0             | $C_2^z$            | $C_2^{\tilde{x}}$ | $C_3^{xyz}$            | $\sigma_d \ C_2^{\prime zx}$ |                                                        |       |
| $O_h$         | $\overline{C_2^z}$ | $\tilde{C_2^x}$   | $C^{xyz}$              | $\bar{C_2'^{zx}}$            |                                                        | $S_2$ |
| Ĩ             | $C_2^z$            | $C_2^{\tilde{x}}$ | $C_3^{\alpha\gamma z}$ | -                            | $C_{5}^{(\Phi_{0}\Phi^{-1})}$                          | -     |
| $I_h$         | $\tilde{C_2^z}$    | $\tilde{C_2^x}$   | $C_3^{xyz}$            |                              | $C_5^{(\Phi_0 \Phi^{-1})} \\ C_5^{(\Phi_0 \Phi^{-1})}$ | $S_2$ |

TABLE 3. THE CHARACTER TABLES OF THE REPRESENTATION GROUPS OF THE POINT GROUPS

| THE ROYAL A<br>SOCIETY                                 |                                                                                                                                                                                                                                                                                                                                                            | $D_{2n}$ $D_{nd}$ $D_{(2n)}$ $T$ $T_h$ $T_d$ $O$ $O_h$ $I$ $I_h$                    | $\begin{array}{c} & S_{2n} \\ S_{2n+1} \\ \end{array}$                                                                                   | $\begin{array}{cccc} & & & & \\ & & & \\ & \sigma_{v} & & \\ & \sigma_{v} & & \sigma_{h} \\ & & C_{2}^{x} & C_{3}^{xyz} \\ & C_{2}^{x} & C_{3}^{xyz} \\ & & C_{2}^{x} & C_{3}^{xyz} \end{array}$ | $\sigma_d \\ C_2^{zx} \\ C_2^{zx}$                                                                                    | $C_5^{(\Phi_0 \phi^{-1})} C_5^{(\phi_0 \phi^{-1})}$                                                        | S <sub>2</sub><br>S <sub>2</sub><br>S <sub>2</sub>                                                                    |                                                                                      |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| TIONS                                                  | Table 3. ]                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                   | $n \leq p \leq n$                                                                                                                        | $1 \leq p \leq n-1$                                                                                                                                                                                                                                                                           | $1 \leq p \leq n$                                                                                                     | · 1                                                                                                        | OF THE POINT G $1 \leqslant p \leqslant 2n - 1$                                                                       |                                                                                      |
| PHILOSOPHICAL<br>TRANSACTIONS                          | $\mathscr{R}_1(C_{2n\hbar})$                                                                                                                                                                                                                                                                                                                               | 1                                                                                   | $Ce_{2n/hef}(n, 2p-1)$<br>$D2p-1Q^2$<br>D2p-1                                                                                            | $1\epsilon_{n/\mathrm{hcf}(n, p)}$ $P^{2p}$                                                                                                                                                                                                                                                   | $1\epsilon_{\mathrm{lem}(n,2)}$<br>$P^{2p}Q^2$                                                                        | $2\epsilon_4 \ Q^3 \ Q$                                                                                    | $2e_{\mathrm{lem}(2n/[\mathrm{hef}(2n,\ p)} P^pQ^3 P^pQ$                                                              | $\begin{vmatrix} 3n \text{ elements} \\ P^{2n} = Q^4 = E \\ QP = PQ^3 \end{vmatrix}$ |
|                                                        | $\begin{array}{c} A_{g} \\ B_{g} \\ A_{u} \\ B_{u} \\ \leqslant l \leqslant n-1; E_{lg} \begin{cases} E_{lg}^{+} \\ E_{lg}^{-} \\ E_{lg}^{+} \\ E_{lg}^{-} \\ E_{lg}^{+} \\ E_{lu}^{-} \\ en; \\ E_{1}^{2} \\ en; \\ E_{n}^{2} \\ \xi \\ l \leqslant \frac{1}{2}(n-1); G_{l} \begin{cases} G_{l}^{+} \\ G_{l}^{-} \\ G_{l}^{-} \\ \end{array} \end{cases}$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                               | $ \frac{1}{1} \\ -1 \\ 1 \\ -1 \\ 1 \\ (2p-1) \pi/n \\ -i l(2p-1) \pi/n \\ 1 \\ (2p-1) \pi/n \\ -i l(2p-1) \pi/n $                       | $ \begin{array}{c} 1 \\ 1 \\ 1 \\ e^{2il p \pi / n} \\ e^{-2il p \pi / n} \\ e^{2il p \pi / n} \\ e^{-2il p \pi / n} \end{array} $                                                                                                                                                            | $ \begin{array}{c} 1 \\ 1 \\ 1 \\ e^{2il p\pi/n} \\ e^{-2il p\pi/n} \\ e^{2il p\pi/n} \\ e^{2il p\pi/n} \end{array} $ | $\begin{array}{c} 1 \\ (-1)^n \\ -1 \\ (-1)^n \\ (-1)^l \\ (-1)^l \\ (-1)^{l+1} \\ (-1)^{l+1} \end{array}$ | $ \begin{array}{c} -1 \\ (-1)^{n+p+1} \\ -e^{ilp\pi/n} \\ -e^{-ilp\pi/n} \\ 1 \\ e^{llp\pi/n} \end{array} $           | $\left. \right\rangle \alpha = +1$                                                   |
| MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES | $\begin{array}{c} \text{ven}; & E_{\frac{1}{2}n} \\ & E_n \\ \vdots \ l \leqslant \frac{1}{2}(n-1); G_l \ \begin{cases} G_l^+ \\ G_l^- \\ \end{bmatrix} \end{array}$                                                                                                                                                                                       | $\begin{array}{cccc} 2 & -2 \\ 2 & -2 \\ 2 & -2 \\ 2 & -2 \\ 2 & -2 \\ \end{array}$ | 0<br>0<br>0<br>0                                                                                                                         | $-2 \ 2 \ 2 e^{2\pi l i/n} \ 2 e^{-2\pi l i/n}$                                                                                                                                                                                                                                               | $2 - 2 - 2 e^{2\pi l i/n} - 2 e^{-2\pi l i/n}$                                                                        |                                                                                                            | 0<br>0<br>0<br>0                                                                                                      | $\left.\right  \left. \left. \right  \alpha = -1 \right $                            |
| K                                                      | $C_{2nh}$                                                                                                                                                                                                                                                                                                                                                  | E A                                                                                 | 12 <i>p</i> -1                                                                                                                           | $A^{2p}$                                                                                                                                                                                                                                                                                      |                                                                                                                       | В                                                                                                          | $A^{p}B$                                                                                                              | $\begin{vmatrix} A^{2n} = B^2 = E \\ BA = AB \end{vmatrix}$                          |
| IE ROYAL<br>CIETY                                      | ${\mathscr R}_2(C_{2nh})$                                                                                                                                                                                                                                                                                                                                  | $1\epsilon_1  1\epsilon_2$                                                          | $1 \leq p \leq n$ $2\epsilon_{4n/\text{hef}(n, 2p-1)}$ $P^{2n+2p-1}$ $P^{2p-1}$                                                          | $\begin{cases} 1 \le p \le n - \\ n+1 \le p \le \\ c_{2n/\operatorname{hef}(2n, p)} \end{cases}$ $P^{2p}$                                                                                                                                                                                     | $\left.\begin{array}{c}1\\2n-1\end{array}\right\}$                                                                    | $2\epsilon_4$<br>$P^{2n}Q$<br>Q                                                                            | $1 \leq p \leq 2n-1$ $2c_{\text{lem}(4n/[\text{hef}(4n, p)], 4)}$ $P^{2n+p}Q$ $P^{p}Q$                                | $8n \text{ elements}$ $P^{4n} = Q^4 = E$ $P^{2n} = Q^2$ $QP = P^{2n+1}Q$             |
| TRANSACTIONS SO                                        | $ \begin{array}{c} & A_{g} \\ & B_{g} \\ A_{u} \\ B_{u} \\ 1 \leqslant l \leqslant n-1; E_{lg} \begin{cases} E_{lg}^{+} \\ E_{lg}^{-} \\ E_{lg}^{+} \\ E_{lg}^{-} \\ E_{lu}^{-} \\ E_{lu} \\ e_{lu} \\ n \end{array} \\ n \ \text{odd}; \qquad E_{\alpha} \end{array} $                                                                                    |                                                                                     | $ \begin{array}{c} 1 \\ -1 \\ 1 \\ e^{il(2p-1)\pi/n} \\ e^{-il(2p-1)\pi/n} \\ e^{il(2p-1)\pi/n} \\ e^{-il(2p-1)\pi/n} \\ 0 \end{array} $ | $\begin{array}{c} 1 \\ 1 \\ 1 \\ e^{2il p\pi/n} \\ e^{-2il p\pi/n} \\ e^{2il p\pi/n} \\ e^{2il p\pi/n} \\ e^{-2il p\pi/n} \\ 2(-1)^p \end{array}$                                                                                                                                             |                                                                                                                       | $\begin{array}{c} 1\\ (-1)^n\\ -1\\ (-1)^{n+1}\\ (-1)^l\\ (-1)^l\\ (-1)^{l+1}\\ (-1)^{l+1}\\ 0\end{array}$ | $ \begin{array}{c} 1\\ (-1)^{n+p}\\ -1\\ (-1)^{n+p+1}\\ -e^{ilp\pi/n}\\ e^{ilp\pi/n}\\ e^{-ilp\pi/n}\\ 0\end{array} $ | $\left. \right\rangle \alpha = +1$                                                   |
| PH<br>TR                                               | $\frac{n \text{ odd;} \qquad E_{lu}}{1 \leq l \leq \frac{1}{2}n; G_{l\alpha}} \frac{E_{\alpha}}{G_{l\alpha}^{-}}}{C_{2nh}}$                                                                                                                                                                                                                                |                                                                                     | $0 \\ 0 \\ A^{2p-1}$                                                                                                                     | $\frac{2e^{ip(2l-1)\pi/n}}{2e^{-ip(2l-1)\pi/n}}$                                                                                                                                                                                                                                              |                                                                                                                       | 0<br>0<br><i>B</i>                                                                                         | $\begin{array}{c} 0 \\ 0 \\ \hline A^{p}B \end{array}$                                                                | $\begin{cases} \alpha = -1 \\ \hline A^{2n} = B^2 = E \\ \hline C = A \end{cases}$   |
|                                                        |                                                                                                                                                                                                                                                                                                                                                            | -                                                                                   |                                                                                                                                          |                                                                                                                                                                                                                                                                                               |                                                                                                                       |                                                                                                            |                                                                                                                       |                                                                                      |

 $\mathbf{244}$ 

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

 $1 \leq p \leq 2n-1$ 

 $2\epsilon_{4n/\text{hef}(4n, p)}$ 

P4n-p

1

 $P^p$ 

 $1\epsilon_1$   $1\epsilon_2$ 

E

 $\mathscr{R}_1(D_{2n})$ 

 $A_1 \mid 1$ 

 $P^{2n}$ 

1

#### REPRESENTATIONS OF POINT GROUPS

| 2                                                 |                                                              |                                 |                                         | 1<br>1<br>1<br>2<br>2                                                                                   |                  |
|---------------------------------------------------|--------------------------------------------------------------|---------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------|------------------|
|                                                   | $ \begin{array}{c} A_1\\ A_2\\ B_1\\ B_2\\ E_l \end{array} $ | $\frac{E_{l\alpha}}{D_2}$       | $1\epsilon_2$<br>$P^{4r}$               | -<br>1<br>1<br>1                                                                                        |                  |
| $\frac{B_1}{B_2}$ 1; $E_l$ $E_{l\alpha}$ $D_{2n}$ | $\frac{\mathscr{R}_2(D)}{n-1}$                               | <i>n</i> ;                      |                                         | $     \begin{array}{c}       1 \\       1 \\       1 \\       2 \\       2 \\       2     \end{array} $ | Ē                |
| $l \leq n - l \leq n;$                            | ≤ <i>l</i> ≤                                                 | ≤ <i>l</i> ≤                    | מ)                                      | $\begin{array}{c}A_1\\A_2\\B_1\\B_2\\E_l\end{array}$                                                    | D <sub>4</sub> n |
|                                                   |                                                              |                                 | $\mathscr{R}_{3}$ (2                    | $l \leq 2n - 1;$<br>$\leq l \leq n; G_{l\alpha}$                                                        |                  |
| NIS SOCIETY                                       | PHILOSOPHIC<br>TRANSACTIC                                    | NATICAL,<br>AL<br>NEERING<br>ES | MATHEN<br>PHYSIC/<br>& ENGII<br>SCIENCI | HE ROYAL A                                                                                              | TRANSACTIONS SC  |
| CAL THE ROVA                                      | DHITOSODHIG                                                  | MATICAL,                        | MATHEN                                  | AF ROVAL A                                                                                              | HICAL T          |

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TABLE 3 (cont.)

 $2n\epsilon_4$ 

 $P^{2q}O$ 

1

 $2n\epsilon_4$ 

 $P^{2q+1}O$ 

1

 $0 \leqslant q \leqslant 2n-1 \quad 0 \leqslant q \leqslant 2n-1$ 

 $A_2$ 1 1 1 -1 -1  $(-1)^{p}$ n 4 1 1 - 1  $\alpha = +1$  $(-1)^{p}$ 1 - 1 1  $\mathbf{2}$  $2\cos\left(lp\pi/n\right)$ 0 0 -2 $2\cos\{(2l-1)p\pi/2n\}$ 0 0  $\alpha = -1$  $A^p$  $A^{2q}B$  $A^{2q+1}B$  $A^{2n} = B^2 = E$  $BA = A^{2n-1}B$  $0 \leq q \leq n-1$  $0 \leq q \leq n-1$  $1 \leq p \leq 2n-1$  $2n\epsilon_2$  $2n\epsilon_2$ 8n elements  $2\epsilon_{4n\,/{\rm hef}(4n,\ p)}$  $1\epsilon_1 \quad 1\epsilon_2$  $0 \leq q \leq 2n-1$  $0 \leq q \leq 2n-1$  $P^{4n-p}$  $P^{4n} = Q^2 = E$  $QP = P^{4n-1}Q$ Ε  $P^{2n}$  $P^p$  $P^{2q}Q$  $P^{2q+1}Q$ 1 1 1 1 1 1 1 - 1 - 1 1  $(-1)^{p}$ 1 1 1 - 1  $\alpha = +1$  $(-1)^{p}$ 1 1 - 1 1  $\mathbf{2}$  $\mathbf{2}$  $2\cos\{lp\pi/n\}$ 0 0  $\mathbf{2}$ -2 $2\cos\{(2l-1)p\pi/2n\}$ 0 0  $\alpha = -1$  $nA^{2q}B$  $nA^{2q+1}B$  $A^{2n} = B^2 = E$ Ε  $A^p$  $BA = A^{2n-1}B$  $0\leqslant q\leqslant n-1$  $0 \leq q \leq n-1$  $1 \leq p \leq 2n-1$  $1 \leq p \leq 2n$  $2\epsilon_{8n/\mathrm{hef}(4n,2p-1)}$  $2\epsilon_{4n/\mathrm{hef}(4n, p)}$  $4n\epsilon_2$  $4n\epsilon_4$ 16n elements  $0 \leq q \leq 4n$  $0 \leq q \leq 4n$  $P^{8n-2p}$  $P^{4n-2p+1}$  $P^{8n} = Q^2 = E$  $P^{2q}Q$  $P^{2q+1}Q$  $P^{2p-1}$  $P^{2p}$  $QP = P^{4n-1}Q$ 1 1 1 1 1 1 -1 - 1 1 - 1 1 -1  $\alpha = +1$ 1 -1 - 1 1  $2\cos\{lp\pi/n\}$ 0 0  $2\cos\{(2p-1) l\pi/2n\}$  $2\cos\{(2l-1)p\pi/2n\}$ 0 0  $2i\sin\{(2p-1)(2l-1)\pi/4n\}$  $\alpha = -1$  $-2i\sin\{(2p-1)(2l-1)\pi/4n\}$  $2\cos\{(2l-1)p\pi/2n\}$ 0 0  $A^{2p}$  $A^{2q}B$  $A^{2q+1}B$  $A^{2p-1}$  $A^{4n} = B^2 = E$  $A^{4n-2p+1}$  $BA = A^{4n-1}B$  $0 \leq q \leq 2n$  $0 \leq q \leq 2n$ 

8n elements

 $QP = P^{4n-1}Q$ 

 $P^{4n} = Q^4 = E; P^{2n} = Q^2$ 



MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES



246

|                 | (16n-8) elements                                                                               | $P^{4n-2} = Q^4 = E$ $QP = P^{4n-3}Q^3$ | $\alpha = +1$ $\alpha = -1$                                                                                                                                           | $A^{4n-2} = B^2 = E$ $BA = A^{4n-3}B$ |
|-----------------|------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|                 | $\begin{array}{l} \left( 4n-2\right) \epsilon_{2} \\ 0 \leqslant q \leqslant 2n-2 \end{array}$ | $P^{2q+1}Q^3$<br>$P^{2q+1}Q$            |                                                                                                                                                                       | $(2n-1) A^{2q+1}B$                    |
|                 | $\begin{array}{l} \left(4n-2\right)\epsilon_4\\ 0\leqslant q\leqslant 2n-2 \end{array}$        | $P^{2a}Q^3$<br>$P^{2a}Q$                | 1 1 1 1 0 0 0 0<br>1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                            | $(2n-1) A^{2q}B$                      |
| TABLE 3 (cont.) | $1 \leqslant p \leqslant n-1$<br>$2\epsilon_{(2n-1)/\operatorname{hef}(2n-1, p)}$              | $P^{4n-2-2p}$ $P^{2p}$                  | $\frac{1}{1} \\ 2 \cos \frac{2 l \rho \pi}{2n-1} \\ 2 \cos \frac{4 l \rho \pi}{2n-1} \\ 2 \cos \frac{4 l \rho \pi}{2n-1} \\ 2 \cos \frac{4 l \rho \pi}{2n-1} $        | $\frac{A^2p}{A^4n^{-2-2p}}$           |
| TABLI           | $1 \leq p \leq n-1$ $1 \leq p \leq 2n-1$<br>$2e_{4n-2}$ $2e_{(4n-2) \ln (4n-2, p)}$            | $P^{4n-1-2p}Q^2$<br>$P^{2p-1}$          | $\begin{array}{c}1\\1\\-1\\0\\2\cos{\frac{l(2p-1)}{2n-1}}\\0\\2\sin{\frac{2l(2p-1)}{2n-1}}\\-2\sin{\frac{2l(2p-1)}{2n-1}}\\\end{array}$                               | $A^{2p-1}$                            |
|                 | $\begin{array}{l} 1\leqslant p\leqslant n-1\\ 2e_{4n-2}\end{array}$                            | $P^{4n-2-2p}Q^2$<br>$P^{2p}Q^2$         | $\begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \cos \frac{2lp\pi}{2n-1} \\ -2 \\ -2 \cos \frac{4lp\pi}{2n-1} \\ -2 \cos \frac{4lp\pi}{2n-1} \end{array}$                          |                                       |
|                 | 1e <sub>1</sub> 1e <sub>2</sub>                                                                | $Q^2$                                   |                                                                                                                                                                       |                                       |
|                 |                                                                                                | E                                       | <u> </u>                                                                                                                                                              | E                                     |
|                 |                                                                                                | $\mathscr{R}_3(D_{4n-2})$               | $1 \leqslant l \leqslant 2n-2; \qquad \begin{array}{c} A_1 \\ B_1 \\ B_2 \\ B_2 \\ E_i \\ \\ E_{i\alpha} \\ 1 \leqslant l \leqslant n-1; G_{i\alpha} \\ \end{array} $ | $D_{4n-2}$                            |

### L. L. BOYLE AND KERIE F. GREEN

### REPRESENTATIONS OF POINT GROUPS

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

247

## TABLE 3 (cont.)

| MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                     |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                          |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CTIONS SOCIETY                                         | Table 3 (cont.)<br>$4\epsilon_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $4\epsilon_{4}$                                                                                                     | <b>4</b> <i>e</i> <b></b>                                      | $4\epsilon_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 464<br>DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $4\epsilon_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4e4                                                                                                      | 4e4                                                                                                                 | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PHILOSOPHICAL<br>TRANSACTIONS                          | $R^2$ $P^2R, P^2R^3$<br>$Q^3R^2$ $P^2Q^2R, P^2Q^2R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} P, P^3\\ PR^2, P^3R^2 \end{array}$                                                                | $egin{array}{c} Q, Q^3 \ P^2 Q, P^2 Q^3 \end{array}$           | $R, R^3$<br>$Q^2 R, Q^2 R^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $PQ \ P^3Q \ PQ^3R^2 \ P^3Q^3R^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $PQ^3$<br>$P^3Q^3$<br>$PQR^2$<br>$P^3QR^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PR<br>PR <sup>3</sup><br>P <sup>3</sup> Q <sup>2</sup> R<br>P <sup>3</sup> Q <sup>2</sup> R <sup>3</sup> | P <sup>3</sup> R<br>P <sup>3</sup> R <sup>3</sup><br>PQ <sup>2</sup> R<br>PQ <sup>2</sup> R <sup>3</sup>            | $Q^{2} Q^{2} Q^{2$ |
|                                                        | $ \begin{array}{r} 1 \\ -1 \\ -1 \\ 1 \\ -1 \\ 1 \\ 1 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1<br>-1<br>-1<br>-1<br>-1<br>-1                                                                                     | $ \begin{array}{r} 1 \\ -1 \\ 1 \\ -1 \\ -1 \\ 1 \end{array} $ | $     \begin{array}{r}       1 \\       -1 \\       -1 \\       1 \\       -1 \\       1     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $     \begin{array}{r}             1 \\             -1 \\           $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $     \begin{array}{r}       1 \\       -1 \\       -1 \\       1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\  $ | 1 - 1<br>1 - 1<br>- 1<br>1 - 1<br>- 1                                                                    | 1 - 1<br>1 - 1<br>- 1<br>1 - 1<br>- 1                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $     \begin{array}{c}       1 \\       1 \\       -2 \\       2 \\       0 \\       0 \\       0     \end{array} $ | $ \begin{array}{c} -1 \\ 1 \\ 0 \\ -2 \\ 2 \end{array} $       | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $     \begin{array}{c}       -1 \\       1 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\    $ | $     \begin{array}{r}       -1 \\       1 \\       0 \\       0 \\       0 \\       0 \\       0     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $                                             | $     \begin{array}{c}       1 \\       -1 \\       0 \\       0 \\       0 \\       0 \\       0     \end{array} $ | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>V</b> ALA                                           | $     \begin{array}{r}       2 \\       -2 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\    $ | 0<br>0<br>0<br>0<br>0                                                                                               | 0<br>0<br>0<br>0<br>0<br>0                                     | $     \begin{array}{r}       -2 \\       2 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\    $ | $ \begin{array}{c} 0 \\ 0 \\ 2i \\ -2i \\ 0 \\ 0 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 $0$ $-2i$ $2i$ $0$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 2i \\ -2i \\ 0 \end{array} $                                           | $0 \\ 0 \\ 0 \\ 0 \\ -2i \\ 2i \\ 2i$                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| THE ROY<br>SOCIETY                                     | 0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>0<br>0<br><i>A</i>                                                                                        | 0<br>0<br>0<br>0<br><i>B</i>                                   | 0<br>0<br>0<br>0<br><i>C</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>0<br>0<br>0<br><i>AB</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>0<br>0<br>                                                                                          | 0<br>0<br>0                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PHILOSOPHICAL<br>TRANSACTIONS                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                     |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                          |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                                           | $4\epsilon_4$                                                       | $4\epsilon_4$                                                                                            | $4\epsilon_2$                                                                                              | $4\epsilon_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 64 elements                                                                                 |
|-------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| ₹<br><sup>28</sup><br>R<br>R <sup>3</sup> | QR<br>$Q^3R$<br>$P^2QR^3$<br>$P^2Q^3R^3$                            | QR <sup>3</sup><br>Q <sup>3</sup> R <sup>3</sup><br>P <sup>2</sup> QR<br>P <sup>2</sup> Q <sup>3</sup> R | PQR<br>P <sup>3</sup> QR <sup>3</sup><br>P <sup>3</sup> Q <sup>3</sup> R<br>PQ <sup>3</sup> R <sup>3</sup> | PQR <sup>3</sup><br>PQ <sup>3</sup> R<br>P <sup>3</sup> QR<br>P <sup>3</sup> Q <sup>3</sup> R <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $P^{4} = Q^{4} = R^{4} = E$ $QP = P^{3}Q$ $RQ = Q^{3}R$ $PR = R^{3}P$ $\alpha \beta \gamma$ |
| •<br>•<br>•<br>•                          | $ \begin{array}{r} 1 \\ -1 \\ -1 \\ 1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$ | $ \begin{array}{c} 1 \\ -1 \\ -1 \\ 1 \\ -1 \\ -1 \\ -1 \\ -1 \end{array} $                              | 1<br>1<br>1<br>-1<br>-1<br>-1<br>-1                                                                        | 1     1     1     1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1     -1 |                                                                                             |
| )                                         | 0<br>0                                                              | 0<br>0                                                                                                   | 0<br>0                                                                                                     | 0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1 1 1                                                                                      |
| ,<br>,                                    | 0                                                                   | 0                                                                                                        | 0                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |
| )                                         | Ő                                                                   | 0<br>0                                                                                                   | Ő                                                                                                          | Ő                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $   \} 1 - 1 1$                                                                             |
| )                                         | 0                                                                   | 0                                                                                                        | 0                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 1 -1                                                                                      |
| )                                         | 0                                                                   | 0                                                                                                        | 0                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |
| )                                         | 0                                                                   | 0                                                                                                        | 0                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1 -1 1                                                                                     |
| )                                         | 0                                                                   | 0                                                                                                        | 0                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ) - 1 - 1 1                                                                                 |
| i                                         | 0                                                                   | 0                                                                                                        | 0                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1 1 -1                                                                                     |
| ì                                         | 0                                                                   | 0                                                                                                        | 0                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )                                                                                           |
| )                                         | 2i                                                                  | -2i                                                                                                      | 0                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 -1 -1                                                                                     |
| )                                         | -2i<br>0                                                            | 2i                                                                                                       | 0                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |
| ,                                         | 0                                                                   | 0<br>0                                                                                                   | 2 - 2                                                                                                      | $-rac{2}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\left  \right\} -1 -1 -1$                                                                  |
|                                           | BC                                                                  |                                                                                                          | ABC                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $A^{2} = B^{2} = C^{2} = E$ $AB = BA$ $AC = CA$ $BC = CB$                                   |

PHILOSOPHICAL THE ROYAL MATHEMATICAL, TRANSACTIONS SOCIETY & BUGINEERING OF SCIENCES

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

PHILOSOPHICAL THE ROYAL A

| _      |          | $\sim$ |     |  |
|--------|----------|--------|-----|--|
| đ      |          | Z      |     |  |
| ū      |          | =      |     |  |
| -      |          | ~      |     |  |
| E      |          | ш      |     |  |
| 9      | _        | ш      | ŝ   |  |
| ⋝      | 2        | z      | ш   |  |
|        | 0        | =      | Ū   |  |
| Ŧ      | <b>×</b> | G      | ≥.  |  |
| 亡      | S        | z      | Πī. |  |
| 2      | $\geq$   | ш      |     |  |
| $\geq$ | ж        | ~      | U.  |  |
| 2      | ٥.       | 60     | S   |  |
|        |          |        |     |  |
|        |          |        |     |  |

| ROYAL<br>JETY                                          | 1                                                                                   |                                                                                                                                                                                                                                                                                | 1 <i>€</i> 1                                                                                            | $1\epsilon_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1\epsilon_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1\epsilon_2$                                                                                                 | $1\epsilon_2$                                                                                                                | $1\epsilon_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1\epsilon_2$                                                                                               | $1\epsilon_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1 \leq p \leq n-1$ $2\epsilon_{2n}$                                                                                                  |
|--------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| THE                                                    |                                                                                     | $\mathcal{R}_1(D_{2nh})$                                                                                                                                                                                                                                                       | E                                                                                                       | $P^{2n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $Q^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $R^2$                                                                                                         | $Q^2R^2$                                                                                                                     | $\dot{P}^{2n}Q^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $P^{2n}R^2$                                                                                                 | $P^{2n}Q^2R^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $P^{4n-2p}Q^2 \ P^{2p}Q^2$                                                                                                            |
| PHILOSOPHICAL<br>TRANSACTIONS                          |                                                                                     | $A_{1g}$ $A_{2g}$ $B_{1g}$ $B_{2g}$ $A_{1u}$ $A_{2u}$ $B_{1u}$                                                                                                                                                                                                                 | 1<br>1<br>1<br>1<br>1<br>1<br>1                                                                         | 1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1<br>1<br>1<br>1<br>1<br>1<br>1                                                                               | 1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                              | 1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1<br>1<br>1<br>1<br>1<br>1<br>1                                                                             | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                       |
|                                                        | $\leq l \leq n-1;$<br>$\leq l \leq n-1;$<br>$\leq l \leq 2n;$<br>$\leq l \leq n-1;$ | $B_{2u}$ $E_{lg}$ $E_{lu}$ $E_{lz}$ $E_{1\beta}$ $E_{2\beta}$ $G_{l\beta} \begin{cases} G_{l\beta}^{+} \\ G_{2\beta} \end{cases}$                                                                                                                                              | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                               | $     \begin{array}{r}       1 \\       2 \\       2 \\       -2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\    $ | $     \begin{array}{r}       1 \\       2 \\       2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\   $ | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                          | $     \begin{array}{r}       1 \\       2 \\       2 \\       -2 \\       -2 \\       -2 \\       -2     \end{array} $       | $     \begin{array}{r}       1 \\       2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\  $ | 1 $2$ $-2$ $2$ $2$ $2$ $2$                                                                                  | $     \begin{array}{r}       1 \\       2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\  $ | $ \frac{1}{2\cos\{2l\rho\pi/n\}} \\ \frac{2\cos\{2l\rho\pi/n\}}{2\cos\{(2l-1)\rho\pi/n\}} \\ \frac{-2}{-2} \\ -2\cos\{2l\rho\pi/n\} $ |
| MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES | ven;<br>$\leq l \leq \frac{1}{2}(n-1)$                                              | $C_{\mu} \left\{ \begin{array}{c} G_{l\beta} \\ E_{1\gamma} \\ E_{2\gamma} \\ G_{\gamma} \\ G_{\gamma} \\ G_{\gamma} \\ G_{\gamma} \\ G_{l\gamma} \\ G_{l\gamma} \end{array} \right\}$                                                                                         | $     \begin{array}{c}       2 \\       2 \\       2 \\       2 \\       4 \\       2     \end{array} $ | $egin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 4 \\ -2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $     \begin{array}{r}       -2 \\       2 \\       2 \\       2 \\       2 \\       4 \\       -2 \\       \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 - 2 - 2 - 2 - 2 - 2 - 2 - 4 2                                                                               | $     \begin{array}{r}       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -4 \\       -2 \\     \end{array} $ | $\begin{array}{c} -2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 4\\ 2\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 - 2 - 2 - 2 - 2 - 2 - 2 - 4 - 2                                                                           | $     \begin{array}{r}       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -4 \\       2     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} -2\cos\{2lp\pi/n\}\\ 2\\ 2\\ 2(-1)^{p}\\ 2(-1)^{p}\\ 4\cos\{2lp\pi/n\}\\ -2\cos\{(2l-1)p\pi\end{array}$             |
| OYAL                                                   | $dd; \qquad 0$ $\leq l \leq \frac{1}{2}n; \qquad 0$                                 | $ \begin{array}{c} {}^{T_{\alpha\beta}} & G_{l\alpha\beta} \\ G_{\alpha\gamma} & G_{\alpha\gamma} \\ G_{\alpha\gamma} & G_{\alpha\gamma} \\ G_{l\alpha\gamma} \\ G_{l\alpha\gamma} \\ G_{l\alpha\gamma} \\ G_{\beta\gamma} \\ G_{\beta\gamma} \\ G_{\beta\gamma} \end{array} $ | $     \begin{array}{c}       2 \\       2 \\       4 \\       2 \\       2     \end{array} $            | $     \begin{array}{r}       -2 \\       -2 \\       -2 \\       -4 \\       2 \\       2     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $   \begin{array}{r}     -2 \\     2 \\     2 \\     4 \\     -2 \\     -2 \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 - 2 - 2 - 4 - 2 - 2 - 2 - 2                                                                                 | $     \begin{array}{r}       -2 \\       -2 \\       -4 \\       2 \\       2     \end{array} $                              | 2 - 2 - 2 - 4 - 2 - 2 - 2 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $     \begin{array}{r}       -2 \\       2 \\       4 \\       -2 \\       -2 \\       -2     \end{array} $ | 2<br>2<br>2<br>4<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $-2\cos\{(2l-1)p\pi 2(-1)^{p} 2(-1)^{p} 4\cos\{(2l-1)p\pi/(-2) -2 -2$                                                                 |
| THE R<br>SOCII                                         | even;<br>even;<br>$\leq l \leq \frac{1}{2}(n-1)$<br>odd;                            | $E_{1\beta\gamma}$<br>$E_{2\beta\gamma}$                                                                                                                                                                                                                                       | $2 \\ 2 \\ 4 \\ 2 \\ 2 \\ 4 \\ 4$                                                                       | $2 \\ 2 \\ 4 \\ -2 \\ -2 \\ -4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $     \begin{array}{r}       -2 \\       -2 \\       -4 \\       -2 \\       -2 \\       -4 \\       -4     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $     \begin{array}{r}       -2 \\       -2 \\       -4 \\       -2 \\       -2 \\       -4     \end{array} $ | 2<br>2<br>4<br>2<br>2<br>4                                                                                                   | $     \begin{array}{r}       -2 \\       -2 \\       -4 \\       2 \\       2 \\       4     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $     \begin{array}{r}       -2 \\       -2 \\       -4 \\       2 \\       2 \\       4     \end{array} $  | 2<br>4<br>-2<br>-2<br>-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 2(-1)^{p+1} \\ 2(-1)^{p+1} \\ -4\cos\{2lp\pi/n\} \\ 2(-1)^{p+1} \\ 2(-1)^{p+1} \\ -4\cos\{(2l-1)p\pi\end{array}$    |
| PHILOSOPHICAL<br>TRANSACTIONS                          | )<br>N                                                                              | $D_{2n\hbar}$                                                                                                                                                                                                                                                                  | E                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                               |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                       |

**AL** 

| 5                         |                                                       |                                                 |                                                                                                 | Тав                                                                                               | LE <b>3 (</b> cont.)                          |
|---------------------------|-------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------|
|                           | $1 \leq p \leq n-1 \\ 2e_{2n}$                        | $1 \leqslant p \leqslant n-1 \\ 2\epsilon_{2n}$ | $1 \leqslant p \leqslant n$ $4e_{4n/\mathrm{hcf}(4n,2p-1)}$                                     | $\begin{array}{l} 1 \leqslant p \leqslant n-1 \\ 2\epsilon_{2n/\mathrm{hcf}(2n,\ p)} \end{array}$ | $1 \leqslant p$<br>$4\epsilon_{4n/	ext{hcf}}$ |
| OCH                       | $P^{4n-2p}R^2$                                        | $P^{4n-2p}R^2$                                  | $P^{4n+1-2p}R^2 \ P^{2p-1}R^2 \ P^{4n+1-2p}$                                                    | P4n-2p                                                                                            | $P^{4n+1-} \ P^{2p-1} \ P^{4n+1-}$            |
| <u> </u>                  | $P^{2p}R^2$                                           | $P^{2p}Q^2R^2$                                  | $P^{2p-1}$                                                                                      | $P^{2p}$                                                                                          | $P^{2p}$                                      |
|                           | 1                                                     | 1                                               | 1                                                                                               | 1                                                                                                 |                                               |
|                           | 1                                                     | 1                                               | 1<br>1                                                                                          | 1<br>1                                                                                            |                                               |
| OF                        | 1                                                     | 1                                               | -1                                                                                              | 1                                                                                                 |                                               |
|                           | 1                                                     | 1                                               | 1                                                                                               | 1                                                                                                 |                                               |
|                           | 1                                                     | 1                                               | -1                                                                                              | 1                                                                                                 | _                                             |
| }                         | $\frac{1}{2\cos\left\{2lp\pi/n\right\}}$              | $1 \\ 2\cos{\{2lp\pi/n\}}$                      | $\frac{-1}{2\cos\{l(2p-1)\pi/n\}}$                                                              | $\frac{1}{2\cos\left\{2lp\pi/n\right\}}$                                                          | $2\cos\{l(2p)\}$                              |
| )<br>}                    | $2\cos\left\{2lp\pi/n\right\}$                        | $2\cos\{2lp\pi/n\}$                             | $2\cos\{l(2p-1)\pi/n\}$                                                                         | $2\cos\{2lp\pi/n\}$                                                                               | $2\cos\{l(2p)\}$                              |
| π/n}                      | $2\cos\{(2l-1)p\pi/n\}$<br>2                          | $\frac{2\cos\{(2l-1)p\pi/n\}}{-2}$              | $\frac{2\cos\{(2l-1)(2p-1)\pi/2n\}}{2}$                                                         | $\frac{2\cos\{(2l-1)\not p\pi/n\}}{2}$                                                            | $2\cos\{(2l-1)$                               |
|                           | 2                                                     | -2                                              | -2                                                                                              | 2                                                                                                 | :                                             |
| }                         | $2\cos \{2lp\pi/n\}$<br>$2\cos \{2lp\pi/n\}$          | $-2\cos\{2lp\pi/n\}-2\cos\{2lp\pi/n\}$          | $\frac{2\cos\{l(2p-1)\pi/n\}}{2\cos\{l(2p-1)\pi/n\}}$                                           | $2\cos \{2lp\pi/n\}\ 2\cos \{2lp\pi/n\}$                                                          | $-2\cos\{l(2)\\-2\cos(l(2))\}$                |
| ,                         | -2                                                    | -2                                              | $\frac{1}{2}\cos\left(t\left(2p-1\right)\pi\right)\pi$                                          | $\frac{2}{2}$                                                                                     |                                               |
| CES                       | $-2 \ 2(-1)^{p+1}$                                    | -2<br>$2(-1)^{p+1}$                             | 0                                                                                               | $2 2 (-1)^p$                                                                                      |                                               |
| CIEN                      | $2(-1)^{p+1}$                                         | $2(-1)^{p+1}$                                   | 0                                                                                               | $2(-1)^{p}$<br>$2(-1)^{p}$                                                                        |                                               |
| ند ا <sup>ر</sup> کر<br>ا | $-4\cos\{2lp\pi/n\}$                                  | $-4\cos\{2lp\pi/n\}$                            | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $                              | $4\cos\{2pl\pi/n\}$                                                                               | 9 (/91 -1)                                    |
| 5π/n}<br>5π/n}            | $\frac{2\cos\{(2l-1)p\pi/n\}}{2\cos\{(2l-1)p\pi/n\}}$ | $-2\cos\{(2l-1)p\pi/n\}-2\cos\{(2l-1)p\pi/n\}$  | $\begin{array}{l} 2\cos\{(2l-1)\;(2p-1)\;\pi/2n\}\\ 2\cos\{(2l-1)\;(2p-1)\;\pi/2n\}\end{array}$ | $\frac{2\cos\{(2l-1)p\pi/n\}}{2\cos\{(2l-1)p\pi/n\}}$                                             | $-2\cos\{(2l-1), -2\cos\{(2l-1), 2l-1\}\}$    |
|                           | $2(-1)^{p+1}$                                         | $2(-1)^{p+1}$                                   |                                                                                                 | $2(-1)^{p}$                                                                                       |                                               |
| τ/n}                      | $2(-1)^{p+1} - 4\cos\{(2l-1)p\pi/n\}$                 | $2(-1)^{p+1} - 4\cos\{(2l-1)p\pi/n\}$           | 0<br>0                                                                                          | $2(-1)^{p}$<br>$4\cos\{(2l-1)p\pi/n\}$                                                            |                                               |
|                           | -2                                                    | 2                                               | 0                                                                                               | <b>2</b>                                                                                          |                                               |
| <b></b>                   | $-2 \\ 2(-1)^{p+1}$                                   | $2 2 (-1)^{p}$                                  | 0<br>0                                                                                          | $2 2 (-1)^p$                                                                                      |                                               |
|                           | $2(-1)^{p+1}$                                         | $2(-1)^{p}$                                     | 0                                                                                               | $2(-1)^{p}$                                                                                       |                                               |
| $\sum_{n} n$              | $-4\cos\{2lp\pi/n\}\2(-1)^{p+1}$                      | $4\cos\{2lp\pi/n\}\2(-1)^p$                     | 0<br>0                                                                                          | $4\cos{\{2lp\pi/n\}}\2(-1)^p$                                                                     |                                               |
| society<br><sup>(n)</sup> | $2(-1)^{p+1}$                                         | $2(-1)^{p}$<br>$2(-1)^{p}$                      | 0                                                                                               | $2(-1)^{p}$<br>$2(-1)^{p}$                                                                        |                                               |
|                           | $-4\cos\{(2l-1)p\pi/n\}$                              | $4\cos\{(2l-1)p\pi/n\}$                         | 0                                                                                               | $4\cos\left\{\left(2l-1\right)p\pi/n\right\}$                                                     |                                               |
| $b = \frac{b\pi/n}{0}$    |                                                       |                                                 | $A^{2p-1}$                                                                                      | $A^{2p}$                                                                                          |                                               |

| MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |                                                                                                                      |                                                                                  |                                                                                                                                   | 248                                                                            |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| HE ROY<br>OCIET                                        | $ \begin{split} p &\leq n \\ ((4n, 2n-1)) \\ -^{2n}Q^2R^2 \\ 1Q^2R^2 \\ 1-^{2n}Q^2 \\ 1-2nQ^2 \\ 1 \\ Q^2R^2 \\ Q^2R^2 \\ 1 \\ Q^2R^2 \\$ | $1 \leq p \leq 2n$<br>$4e_{4n/hcf(4n, 2p-1)}$<br>$P^{4n+1-2p}Q^2R^3$<br>$P^{4n+1-2p}Q^2R$<br>$P^{2p-1}R^3$<br>$P^{2p-1}R^3$   | $0 \leq p \leq 2n-1$ $4e_{4n/hcf(2n-3, p)}$ $P^{4n-2p}Q^{2}R^{3}$ $P^{4n-2p}R^{3}$ $P^{2p}R^{3}$ $P^{2p}R^{3}$       | $4ne_4$ $0 \le q \le 2n - 1$ $P^{2q}Q^3$                                         | $4ne_4$ $0 \leq q \leq 2n-1$ $P^{2q}Q^3R^2$ $P^{2r}Q^3R^2$                                                                        | $4n\epsilon_4$ $1 \leqslant q \leqslant 2n$ $P^{2q-1}Q^3R^2$                   |
| CTIONS                                                 | $\frac{-1Q^2}{1}$<br>1<br>1<br>· 1<br>· 1<br>1<br>1<br>1<br>1<br>1<br>1<br>· 1<br>· · 1<br>· 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} P^{2p-1}R \\ 1 \\ (-1)^{n-1} \\ (-1)^{n-1} \\ -1 \\ -1 \end{array}$                                         | $ \begin{array}{c} P^{2p}R \\ 1 \\ (-1)^n \\ (-1)^n \\ -1 \\ -1 \\ -1 \end{array} $                                  | $\begin{array}{c} P^{2a}Q\\ \hline \\ 1\\ -1\\ 1\\ -1\\ -1\\ -1\\ 1 \end{array}$ | $   \begin{array}{r}     P^{2a}QR^{2} \\     1 \\     -1 \\     1 \\     -1 \\     -1 \\     -1 \\     1 \\     1   \end{array} $ | $\begin{array}{c} P^{2q-1}Q \\ 1 \\ -1 \\ -1 \\ 1 \\ -1 \\ 1 \\ 1 \end{array}$ |
|                                                        | $ \begin{array}{l} \cdot 1 \\ \cdot 1 \\ \flat - 1 \end{pmatrix} \pi / n \\ \flat - 1 \end{pmatrix} \pi / n \\ (2p - 1) \pi / 2n \\ \cdot 2 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} (-1)^n \\ (-1)^n \\ (-1)^l 2 \cos \{l(2p-1) \ \pi/n\} \\ (-1)^{l+1} 2 \cos \{l(2p-1) \ \pi/n\} \end{array}$ | $(-1)^{n-1} \ (-1)^{n-1} \ (-1)^{l} 2\cos\{2lp\pi/n\} \ (-1)^{l+1} 2\cos\{2lp\pi/n\}$                                | $ \begin{array}{c} 1 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $           | $ \begin{array}{c} -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $                                                                      | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $                   |
| HYSICAL<br>ENGINEERING<br>CIENCES                      | 2<br>$2p-1$ ) $\pi/n$ }<br>$2p-1$ ) $\pi/n$ }<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0 \\ 2i \sin \{l(2p-1) \pi/n\} \\ -2i \sin \{l(2p-1) \pi/n\} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$                    | $\begin{matrix} 0 \\ 2i \sin \{2lp\pi/n\} \\ -2i \sin \{2lp\pi/n\} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $ | $ \begin{array}{c} 0 \\ 0 \\ 2 \\ -2 \\ 0 \\ 0 \end{array} $                     | $ \begin{array}{c} 0 \\ 0 \\ -2 \\ 2 \\ 0 \\ 0 \end{array} $                                                                      | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                |
| ALA.                                                   | 0<br>) $(2p-1) \pi/2n$ }<br>) $(2p-1) \pi/2n$ }<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0$ 2i sin { (2l - 1) (2p - 1) $\pi/2n$ } - 2i sin { (2l - 1) (2p - 1) $\pi/2n$ } 0 0 0                                       | $0 \\ 2i \sin \{(2l-1) p\pi/n\} \\ -2i \sin \{(2l-1) p\pi/n\} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $      | 0<br>0<br>0<br>0<br>0                                                            | 0<br>0<br>0<br>0<br>0                                                                                                             | 0<br>0<br>0<br>0<br>0<br>0<br>2i                                               |
| SOCIETY                                                | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>0<br>0<br>0<br>0<br>0                                                                                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                      | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                   | $ \begin{array}{c} 21 \\ -2i \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $       |
|                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{0}{A^{2p-1}C}$                                                                                                         | 0<br>————————————————————————————————————                                                                            | $0$ $A^{2q}B$ $0 \le q \le n-1$                                                  | 0                                                                                                                                 | $0$ $A^{2q-1}B$ $1 \leqslant q \leqslant r$                                    |

| HE F<br>OCI                                            | $4ne_4 \leq q \leq 2n$ $2^{2q-1}Q^3R^2$ $P^{2q-1}Q$                                        | $\begin{array}{c} 4ne_4\\ 1\leqslant q\leqslant 2n\\ P^{2q-1}QR^2\\ P^{2q-1}Q^3 \end{array}$            | $4n\epsilon_4$<br>$0\leqslant q\leqslant n-1$ ( $P^{4q+2}Q^3R$<br>$P^{4q+2}QR$<br>$P^{4q}Q^3R^3$<br>$P^{4q}QR^3$ | $4ne_4$<br>$0 \leqslant q \leqslant n-1$<br>$P^{4q+2}Q^3R^3$<br>$P^{4q+2}QR^3$<br>$P^{4q}Q^3R$<br>$P^{4q}QR$ | $4ne_2 \ 1\leqslant q\leqslant n \ P^{4q-3}Q^3R^3 \ P^{4q-1}QR^3 \ P^{4q-1}Q^3R$   | $\begin{array}{c} 4ne_2\\ 1\leqslant q\leqslant n\\ P^{4q-3}QR^3\\ P^{4q-3}Q^3R\\ P^{4q-1}Q^3R^3\\ P^{4q-1}QR \end{array}$ | $64n \text{ elements}$ $P^{4n} = Q^4 = R^4 = E$ $QP = P^{4n-1}Q; RQ = Q^3R$ $PR = R^3P$                                                                                                       |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                        | $ \begin{array}{c} 1 \\ -1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 0 \\ 0 \end{array} $             | $ \begin{array}{c} 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 0 \\ 0 \end{array} $                                | $ \begin{array}{c} 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 0 \\ 0 \end{array} $                              | $ \begin{array}{c} 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 0 \\ 0 \end{array} $                          | $ \begin{array}{c} 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \end{array} $      | $ \begin{array}{c} 1 \\ -1 \\ 1 \\ 1 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \end{array} $                                              | $\left.\right\rangle \qquad \alpha = +1; \beta = +1; \gamma = +1$                                                                                                                             |
| MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2i \\ -2i \\ 0 \end{array}$                                 | $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -2i \\ 2i \\ 0 \end{array} $                                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                        | $ \left. \begin{array}{l} \alpha = -1;  \beta = +1;  \gamma = +1 \\ \alpha = +1;  \beta = -1;  \gamma = +1 \\ \end{array} \right\} \\ \alpha = +1;  \beta = +1;  \gamma = -1 \\ \end{array} $ |
| HE ROYAL A<br>OCIETY                                   | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 2i \\ -2i \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$ | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -2i \\ 2i \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$ | $\begin{array}{c} 0 \\ 0 \\ 2i \\ -2i \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                          | $\begin{array}{c} 0 \\ 0 \\ -2i \\ 2i \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                      | $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \\ -2 \\ 0 \\ 2 \end{array} $   | $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -2 \\ 2 \\ 0 \\ -2 \end{array} $                                          | $\begin{cases} \alpha = -1; \beta = -1; \gamma = +1 \\ \alpha = -1; \beta = +1; \gamma = -1 \\ \alpha = +1; \beta = -1; \gamma = -1 \end{cases}$                                              |
| ONS S(                                                 | $\frac{0}{0}$ $\frac{1}{A^{2q-1}B}$ $1 \leq q \leq n$                                      | 0                                                                                                       | 0<br>0<br><i>A</i> <sup>4</sup> <i>qBC</i>                                                                       | $0 \\ 0 \\ A^{4q-2}BC$                                                                                       | $\begin{array}{c} -\frac{2}{0} \\ 0 \\ 1 \leq q \leq \frac{1}{2}(n+1) \end{array}$ | $\begin{array}{c} 2\\ 0\\ \end{array}$ $A^{4q-1}BC\\ 1 \leqslant q \leqslant \frac{1}{2}n \end{array}$                     | $\begin{cases} \alpha = -1; \ \beta = -1; \ \gamma = -1 \\ \\ A^{2n} = B^2 = C^2 = F \\ BA = A^{2n-1}B \\ CA = AC; \ CB = BC \end{cases}$                                                     |

 $\mathbf{248}$ 

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

| THE ROYAL A<br>SOCIETY        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 161                                                                      | $1\epsilon_2$                                                                                                         | $1e_2$                                                                                                                | $1\epsilon_2$                                                                                                                        | $1\epsilon_2$                                                                                                                      | $1\epsilon_2$                                                                                                          | $1\epsilon_2$                                                                                             | $1\epsilon_2$                                                                                                                            | $1 \leq p \leq 2n-1$ $2e_{4n/\text{hcf}(4n, p)}$                                                                                                                   | 1 5                          |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|                               | $\mathscr{R}_2(D_{4n\hbar})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E                                                                        | $P^{4n}$                                                                                                              | $Q^2$                                                                                                                 | $R^2$                                                                                                                                | $Q^2R^2$                                                                                                                           | $P^{4n}Q^2$                                                                                                            | $P^{4n}R^2$                                                                                               | $P^{4n}Q^2R^2$                                                                                                                           | $P^{8n-2p}Q^2 \ P^{2p}Q^2$                                                                                                                                         |                              |
| PHILOSOPHICAL<br>TRANSACTIONS | $\begin{array}{c} A_{1g} \\ A_{2g} \\ B_{1g} \\ B_{2g} \\ A_{1u} \\ A_{2u} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1<br>1<br>1<br>1<br>1<br>1<br>1                                          | 1<br>1<br>1<br>1<br>1<br>1                                                                                            | 1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                       | 1<br>1<br>1<br>1<br>1<br>1                                                                                                           | 1<br>1<br>1<br>1<br>1<br>1                                                                                                         | 1<br>1<br>1<br>1<br>1<br>1                                                                                             | 1<br>1<br>1<br>1<br>1                                                                                     | 1<br>1<br>1<br>1<br>1<br>1                                                                                                               | 1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                    |                              |
|                               | $\begin{array}{c} B_{1u} \\ B_{2u} \\ 1 \leq l \leq 2n-1;  E_{lg} \\ 1 \leq l \leq 2n-1;  E_{lg} \\ 1 \leq l \leq 2n;  G_{l\alpha} \begin{cases} G_{l\alpha}^+ \\ G_{l\alpha}^- \\ G_{l\alpha}^- \\ E_{1g} \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                           | $     \begin{array}{c}       1 \\       1 \\       2 \\       -2 \\       -2 \\       2     \end{array} $             | $     \begin{array}{c}       1 \\       2 \\       2 \\       2 \\       2 \\       - 2     \end{array} $             | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                            | $     \begin{array}{c}       1 \\       1 \\       2 \\       2 \\       2 \\       2 \\       - 2     \end{array} $               | $     \begin{array}{r}       1 \\       2 \\       2 \\       -2 \\       -2 \\       -2 \\       -2     \end{array} $ | $     \begin{array}{c}       1 \\       1 \\       2 \\       -2 \\       -2 \\       2     \end{array} $ | $     \begin{array}{r}       1 \\       2 \\       2 \\       -2 \\       -2 \\       -2 \\       -2     \end{array} $                   | $\begin{array}{c} 1 \\ 1 \\ 2\cos \{lp\pi/n\} \\ 2\cos \{lp\pi/n\} \\ 2\cos \{(2l-1)p\pi/2n\} \\ 2\cos \{(2l-1)p\pi/2n\} \\ -2 \end{array}$                        | 2<br>2<br>2 co<br>2 co       |
| SELAT                         | $ \begin{array}{c} \overset{L_{2\beta}}{\underset{l \neq 0}{\underset{l \atop1}{\atop_{l \neq 0}{\underset{l \atop1}{\atop_{1}{\atop1}{\atop_{1}{\atop1}{\atop_{1}{\atop1}{\atop1}{\atop1}{\atop1}{\atop1}{\atop1}{\atop1}{\atop1}{\atop1}{$ | $ \begin{array}{c c} 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2 \end{array} $ | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                             | $     \begin{array}{r}       -2 \\       -2 \\       -2 \\       2 \\       2 \\       2 \\       2     \end{array} $ | 2<br>2<br>-2<br>-2<br>-2<br>-2<br>-2                                                                                                 | $   \begin{array}{r}     -2 \\     -2 \\     -2 \\     -2 \\     -2 \\     -2 \\     -2 \\     -2 \\     -2 \\   \end{array} $     | $     \begin{array}{r}       -2 \\       -2 \\       -2 \\       2 \\       2 \\       2 \\       2     \end{array} $  | 2<br>2<br>-2<br>-2<br>-2<br>-2                                                                            | $   \begin{array}{r}     -2 \\     -2 \\     -2 \\     -2 \\     -2 \\     -2 \\     -2 \\     -2 \\     -2 \\     -2 \\   \end{array} $ | $-2 \ 2(-1)^{p+1} \ 2(-1)^{p+1} \ 2 \ 2 \ 2 \ 2(-1)^p \ 2(-1)^p \ 2(-1)^p$                                                                                         |                              |
| E ROYAL                       | $1 \leq l \leq n-1;  \begin{array}{l} G_{l\gamma} \\ G_{l\alpha\beta} \\ 1 \leq l \leq 2n; G_{l\alpha\beta} \\ G_{l\alpha\beta} \\ G_{l\alpha\beta} \\ I \leq l \leq n;  G_{l\alpha\gamma} \\ G_{\beta\gamma} \\ G_{\beta\gamma} \\ G_{\beta\gamma} \\ E_{1\beta\gamma} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c c} 4\\ 2\\ 2\\ 4\\ 2\\ 2\\ 2\\ 2\\ 2\end{array}$        | $     \begin{array}{r}       4 \\       -2 \\       -2 \\       -4 \\       2 \\       2 \\       2     \end{array} $ |                                                                                                                       | $     \begin{array}{r}       -2 \\       -4 \\       2 \\       -4 \\       -2 \\       -2 \\       -2 \\       -2     \end{array} $ | $     \begin{array}{r}       -2 \\       -4 \\       -2 \\       -2 \\       -4 \\       2 \\       2 \\       2     \end{array} $ | $ \begin{array}{r}     4 \\     2 \\     -4 \\     -2 \\     -2 \\     -2 \\     -2 \end{array} $                      |                                                                                                           | $     \begin{array}{r}       -2 \\       -4 \\       2 \\       4 \\       2 \\       2 \\       2 \\       2     \end{array} $          | $\begin{array}{c} 4\cos\{(2l-1)p\pi/n\}\\ -2\cos\{(2l-1)(2p-1)\pi/2n\}\\ -2\cos\{(2l-1)(2p-1)\pi/2n\}\\ 4\cos\{(2l-1)p\pi/2n\}\\ -2\\ -2\\ 2(-1)^{p+1}\end{array}$ | $-4$ $2\cos\{1$ $2\cos\{-4c$ |
| IS SOC                        | $1 \leq l \leq n-1; \qquad \begin{array}{c} E_{2\beta\gamma} \\ G_{l\beta\gamma} \\ 1 \leq l \leq n; \qquad G_{l\alpha\gamma} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , 2<br>4<br>4                                                            | 2 $4$ $-4$                                                                                                            | $-2 \\ -4 \\ -4$                                                                                                      | $-2 \\ -4 \\ -4$                                                                                                                     | 2<br>4<br>4                                                                                                                        | $ \begin{array}{r} -2 \\ -4 \\ 4 \end{array} $                                                                         | $-2 \\ -4 \\ 4$                                                                                           | 2<br>4<br>- 4                                                                                                                            | $\frac{2(-1)^{p+1}}{-4\cos\{(2l-1)p\pi/n\}} - 4\cos\{(2l-1)p\pi/2n\}$                                                                                              | -4c<br>-4c                   |
| PHILOSOPHICAL<br>TRANSACTIONS | $D_{4n\hbar}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                          |                                                                                                                       |                                                                                                                       |                                                                                                                                      |                                                                                                                                    |                                                                                                                        |                                                                                                           |                                                                                                                                          |                                                                                                                                                                    |                              |

 $\mathbf{249}$ 

| MATHEMATICAL, | & ENGINEERING |
|---------------|---------------|
| PHYSICAL      | SCIENCES      |
| 2T            | a<br>N<br>O   |

| л                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| THE ROYAL A<br>SOCIETY                      | $\begin{split} &1\leqslant p\leqslant 2n-1\\ &2\epsilon_{4n/\mathrm{hef}(4n,p)} \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{split} &1\leqslant p\leqslant 2n-1\\ &2\epsilon_{4n/\mathrm{hcf}(4n,\ p)} \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1 \leq p \leq 2n$ $4\epsilon_{8n/\text{hct}(8n, 4p-3)}$ $P^{4n+3-4p}R^{2}$ $P^{4p-3}R^{2}$                                   | $\begin{array}{l} 1 \leqslant p \leqslant 2n-1 \\ 2 e_{4n/\mathrm{hcf}(4n,  p)} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T,             |
| NS                                          | $P^{8n-2p}R^2$<br>$P^{2p}R^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $P^{8n-2p}Q^2R^2 \ P^{2p}Q^2R^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $P^{4n+3-4p}$<br>$P^{4p-3}$                                                                                                   | $P^{8n-2p}$ $P^{2p}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| ¥₿                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| PHILOSOPHICAL<br>TRANSACTIONS               | 1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1<br>1<br>-1<br>-1                                                                                                            | 1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| HA                                          | 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1<br>1<br>-1                                                                                                                  | 1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
|                                             | $ \frac{1}{2 \cos \{l \rho \pi / n\}} \\ 2 \cos \{l \rho \pi / n\} \\ \cos \{(2l-1) \rho \pi / 2n\} \\ \cos \{(2l-1) \rho \pi / 2n\} \\ 2 \\ 2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \frac{1}{2 \cos \{l \rho \pi / n\}} \\ \frac{2 \cos \{l \rho \pi / n\}}{2 \cos \{(2l-1) \rho \pi / 2n\}} \\ \frac{2 \cos \{(2l-1) \rho \pi / 2n\}}{-2} \\ -2 \\ -2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-1$ $2\cos\{l(4p-3)\pi/2n\}$ $2\cos\{l(4p-3)\pi/2n\}$ $2i\sin\{(2l-1)(4p-3)\pi/4n\}$ $-2i\sin\{(2l-1)(4p-3)\pi/4n\}$ $-2i-2$ | $1 \\ 2 \cos \{lp\pi/n\} \\ 2 \cos \{lp\pi/n\} \\ 2 \cos \{(2l-1) p\pi/2n\} \\ 2 \cos \{(2l-1) p\pi/2n\} \\ 2 \cos \{(2l-1) p\pi/2n\} \\ 2 \\ 2 \\ 2 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2i si<br>-2i   |
| MATHEMA<br>PHYSICAL<br>& ENGINE<br>SCIENCES | $2(-1)^p \ 2(-1)^p \ -2 \ -2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2(-1)^{p+1} \ 2(-1)^{p+1} \ -2 \ -2 \ -2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>0<br>0                                                                                                              | $2(-1)^{p} \ 2(-1)^{p} \ 2 \ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2i si<br>—2i s |
| $\triangleleft$                             | $2(-1)^{p+1}$ $2(-1)^{p+1}$ $4\cos\{(2l-1)p\pi/n\}$ $s\{(2l-1)(2p-1)\pi/2n\}$ $s\{(2l-1)(2p-1)\pi/2n\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 2(-1)^{p+1} \\ 2(-1)^{p+1} \\ -4\cos\left\{(2l-1)p\pi/n\right\} \\ -2\cos\left\{(2l-1)(2p-1)\pi/2n\right\} \\ -2\cos\left\{(2l-1)(2p-1)\pi/2n\right\} \\ -\cos\left\{(2l-1)(2p-1)\pi/2n\right\} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $002i sin {(2l-1) (4p-3) \pi/4n}- 2i sin {(2l-1) (4p-3) \pi/4n}$                                                              | $\begin{array}{c} 2(-1)^{p} \\ 2(-1)^{p} \\ 4\cos\{(2l-1)p\pi/n\} \\ 2\cos\{(2l-1)(2p-1)\pi/2n\} \\ 2\cos(2l-1)(2p-1)\pi/2n\} \\ 4\exp\{(2l-1)(2p-1)\pi/2n\} \\ 2\exp\{(2l-1)(2p-1)\pi/2n\} \\ 2\exp\{(2l-1)\pi/2n\} \\ 2\exp\{(2l-1)\pi/2n\}$ | 2 co<br>2 co   |
| HE RO<br>OCIET                              | $\frac{1}{2} \cos \{ (2l-1) p\pi/2n \} -2 -2 \\ 2(-1)^{p+1} \\ 2(-1)^{p+1} +1 \\ 2(-1)^$ | $-4\cos\{(2l-1)p\pi/2n\}$ 2 2 2 2(-1)p 2(-1 |                                                                                                                               | $\frac{4\cos\{(2l-1)p\pi/2n\}}{2}$ $\frac{2}{2(-1)^{p}}$ $\frac{2(-1)^{p}}{2(-1)^{p}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
|                                             | $l\cos\{(2l-1)p\pi/n\}$<br>$l\cos\{(2l-1)p\pi/2n\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{4\cos\{(2l-1)p\pi/n\}}{4\cos\{(2l-1)p\pi/2n\}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>0                                                                                                                        | $\frac{4\cos\{(2l-1)p\pi/n\}}{4\cos\{(2l-1)p\pi/2n\}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| PHILOSOPHICAL<br>TRANSACTIONS               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $A^{2p-1}$ $A^{4n+1-2p}$ $1 \le p \le n$                                                                                      | $A^{2p}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
| TR                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |

| MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                         |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| THE RO<br>SOCIET                                       | $\Gamma_{\text{ABLE } 3 (cont.)}$ $1 \leq p \leq 4n$ $4\epsilon_{8n/\text{hcf}(2p-1, n)}$ $P^{4n+1-2p}Q^2R^3$ $P^{4n+1-2p}Q^2R$ $P^{2p-1}R^3$                                                                            | $0 \leq p \leq 4n-1$ $4c_{4/\text{hcf}(n, p)}$ $P^{8n-2p}Q^2R^3$ $P^{8n-2p}Q^2R$ $P^{2p}R^3$                                                                                                                                                     | $egin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                     | $8ne_4$ $0 \leqslant q \leqslant 4n - 1$ $P^{2q}Q^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $8ne_4$ $0 \leqslant q \leqslant 4n - 1$ $P^{2q}Q^3R^2$                                                                                                                                                                                 |
| PHILOSOPHICAL<br>TRANSACTIONS                          |                                                                                                                                                                                                                          | $ \begin{array}{c} P^{2p}R \\ 1 \\ (-1)^{p} \\ (-1)^{p} \\ -1 \\ -1 \\ (-1)^{p} \\ \end{array} $                                                                                                                                                 |                                                                                                                                                                                        | $     \begin{array}{r}             P^{2q}Q \\             1 \\             -1 \\           $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $   \begin{array}{c}     P^{2a}QR^{2} \\     \hline     1 \\     -1 \\     1 \\     -1 \\     -1 \\     -1 \\     1 \\   \end{array} $                                                                                                  |
| MATICAL,<br>AL<br>INEERING<br>ES                       | $1$ $1$ $2 \cos \{l(2p-1) \pi/2n\}$ $- 2 \cos \{l(2p-1) \pi/2n\}$ $i \sin \{(2l+1) (2p-1) \pi/4n\}$ $2i \sin \{(2l+1) (2p-1) \pi/4n\}$ $0$ $0$ $\sin \{(2l-1) (2p-1) \pi/2n\}$ $i \sin \{(2l-1) (2p-1) \pi/2n\}$ $0$ $0$ | $\begin{array}{c} (-1)^{p+1} \\ (-1)^{p+1} \\ 2\cos\{lp\pi/n\} \\ -2\cos\{lp\pi/n\} \\ (-1)^{l+1}2\cos\{(2l-1)\pi/2n\} \\ (-1)^{l+1}2\cos\{(2l-1)p\pi/2n\} \\ 0 \\ 0 \\ 2i\sin\{(2l-1)p\pi/n\} \\ -2i\sin\{(2l-1)p\pi/n\} \\ 0 \\ 0 \end{array}$ | $-1 \\ -1 \\ 2\cos\{l(4p-3)\pi/2n\} \\ 2\cos\{l(4p-3)\pi/2n\} \\ 2i\sin\{(2l-1)(4p-3)\pi/4n\} \\ -2i\sin\{(2l-1)(4p-3)\pi/4n\} \\ -2 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $ | $ \begin{array}{c} -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \\ 2 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $     \begin{array}{r}       -1 \\       1 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       -2 \\       2 \\       \end{array} $ |
|                                                        | $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$                                                                                                                                                    | $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 2i \sin \{(2l-1) p\pi/2n\} \\ -2i \sin \{(2l-1) p\pi/2n\} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                   | $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ -2i\sin\left\{(2l-1) (4p-3) \pi/4n\right\} \\ 2i\sin\left\{(2l-1) (4p-3) \pi/4n\right\} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$      | $     \begin{array}{c}       -2 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\    $ | $2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                    |
| PHILOSOPHICAL<br>TRANSACTIONS                          | $0$ $A^{2p-1}C$ $1 \le p \le 2n$                                                                                                                                                                                         | $0$ $A^{2p}C$ $0 \le p \le 2n-1$                                                                                                                                                                                                                 | 0                                                                                                                                                                                      | $0$ $A^{2q}B$ $0 \leq q \leq 2n-1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                       |

| MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES |                                                                                     |                                                                                |                                                                                                                    |                                                                                                   |                                                                                                                            |                                                                                                          |                                                                          |
|--------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| E ROYAL A<br>CIETY                                     | 8ne4                                                                                | $8n\epsilon_4$                                                                 | $8n\epsilon_4$                                                                                                     | $8n\epsilon_4$                                                                                    | 8nc4                                                                                                                       | $8n\epsilon_4$                                                                                           | 128n                                                                     |
| SO                                                     | $-1$ $1 \leqslant q \leqslant 4n$<br>$P^{2q-1}Q^3R^2$<br>$P^{2q-1}Q$                | $1 \leqslant q \leqslant 4n$<br>$P^{2q-1}QR^2$<br>$P^{2q-1}Q^3$                | $0 \leqslant q \leqslant n-1 \ P^{4q-2}Q^{3}R^{3} \ P^{4q-4}Q^{3}R \ P^{4q-2}QR^{3} \ P^{4q-2}QR^{3} \ P^{4q-4}QR$ | $0 \leqslant q \leqslant n-1 \ P^{4q-2}Q^{3}R \ P^{4q-4}Q^{3}R^{3} \ P^{4q-2}QR \ P^{4q-4}QR^{3}$ | $\begin{array}{l} 0 \leqslant q \leqslant n-1 \\ P^{4q-1}Q^3R^3 \\ P^{4q-3}Q^3R \\ P^{4q-1}QR^3 \\ P^{4q-3}QR \end{array}$ | $0 \leqslant q \leqslant n-1 \ P^{4q-1}Q^3R \ P^{4q-3}Q^3R^3 \ P^{4q-1}QR \ P^{4q-3}QR^3$                | $P^{8n} = QP = RP$ $RP$ $RQ$                                             |
| PHILOSOPHICAL<br>TRANSACTIONS                          | $ \begin{array}{c} 1 \\ -1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{array} $ | $ \begin{array}{c} 1 \\ -1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 0 \\ 0 \end{array} $ | $ \begin{array}{c} 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 0 \\ 0 \end{array} $                                | $ \begin{array}{c} 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 0 \\ \end{array} $                 | $ \begin{array}{r}1\\-1\\-1\\1\\-1\\-1\\-1\\-1\\0\end{array}$                                                              | $ \begin{array}{c} 1 \\ -1 \\ -1 \\ 1 \\ 1 \\ -1 \\ -1 \\ 1 \\ 0 \\ \end{array} $                        | $\left. \right\rangle \alpha = +1; \beta$                                |
| ATHEMATICAL,<br>HYSICAL<br>ENGINEERING<br>LIENCES      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                    |                                                                                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                                          | $\begin{cases} \alpha = -1; \beta \\ \alpha = +1; \beta \end{cases}$     |
|                                                        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                           | $ \begin{array}{c} 0 \\ 0 \\ 2i \\ -2i \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $                                      | $\begin{array}{c} 0 \\ 0 \\ -2i \\ 2i \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$                       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                     | $\begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ |
| SOCIETY                                                | 2i<br>- 2i<br>0<br>0<br>0<br>0<br>0                                                 | - 2i<br>2i<br>0<br>0<br>0<br>0                                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                    | 0<br>0<br>0<br>0<br>0<br>0                                                                        | $     \begin{array}{c}       0 \\       0 \\       2 \\       -2 \\       0 \\       0     \end{array} $                   | $     \begin{array}{c}       0 \\       0 \\       -2 \\       2 \\       0 \\       0     \end{array} $ | $\begin{cases} \alpha = -1; \beta \\ \alpha = -1; \beta \end{cases}$     |
| PHILOSOPHICAL<br>TRANSACTIONS                          | $\begin{array}{c} A^{2q-1}B\\ 1\leqslant q\leqslant 2n\end{array}$                  |                                                                                | $A^{4q}BC$ $0 \leq q \leq n-1$                                                                                     | $A^{4q+2}BC$ $0 \leqslant q \leqslant n-1$                                                        | $A^{4q+1}BC$ $0 \leqslant q \leqslant n-1$                                                                                 | $A^{4a+3}BC$ $0 \leqslant q \leqslant n-1$                                                               | $A^{4n} = E$ $BA =$ $CA = A0$                                            |

| MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES |  |
|--------------------------------------------------------|--|
| PHILOSOPHICAL THE ROYAL A<br>TRANSACTIONS SOCIETY      |  |

| MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES |  |
|--------------------------------------------------------|--|
| THE ROYAL A SOCIETY                                    |  |
| PHILOSOPHICAL<br>TRANSACTIONS                          |  |

| $P^{8n} =$ | $Q^4$ :  | $= R^4$ | = | Ε |
|------------|----------|---------|---|---|
| OP =       | $P^{4n}$ | -1Q     |   |   |

128n elements

| $QP = P^{4n-1}Q$ |  |
|------------------|--|
| $RP = PR^3$      |  |
| $RQ = Q^{3}R$    |  |
|                  |  |

 $=+1;\beta=+1;\gamma=+1$ 

| $=-1; \beta=+1; \gamma=+1$                                       |
|------------------------------------------------------------------|
| $=+1; \beta=-1; \gamma=+1$                                       |
| $=+1; \beta =+1; \gamma =-1$                                     |
| $=-1; \beta=-1; \gamma=+1$                                       |
| $=-1;\beta=+1;\gamma=-1$                                         |
| $=+1; \beta = -1; \gamma = -1$                                   |
| $=-1; \beta = -1; \gamma = -1$                                   |
| $A^{4n} = B^2 = C^2 = E$<br>$BA = A^{2n-1}B$<br>CA = AC; CB = BC |

| MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES |                                                           |                                                                                                                                                                                                                                                        |                                             |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |                                                                                                                      |                                                                                                              |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                   |
|--------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| THE ROYAL A SOCIETY                                    |                                                           |                                                                                                                                                                                                                                                        | 1¢1                                         | $1\epsilon_2$                                                                                            | $1\epsilon_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1e_2$                                                                                                           | $1\epsilon_2$                                                                                                        | $1\epsilon_2$                                                                                                | 1c <sub>2</sub>                                                                                                       | $1\epsilon_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{l} 1\leqslant p\leqslant 2n-2\\ 2\epsilon_{4n-2} \end{array}$                                                                                      |
| HICAL                                                  |                                                           | $\mathscr{R}_2(D_{(4n-2)\hbar})$                                                                                                                                                                                                                       | Ε                                           | $P^{4n-2}$                                                                                               | $Q^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $R^2$                                                                                                            | $Q^2R^2$                                                                                                             | $P^{4n-2}Q^2$                                                                                                | $P^{4n-2}R^2$                                                                                                         | $P^{4n-2}Q^2R^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $P^{8n-4-2p}Q^2 \ P^{2p}Q^2$                                                                                                                                      |
| PHILOSOPHICAL<br>TRANSACTIONS                          |                                                           | $\begin{array}{c}A_{1g}\\A_{2g}\\B_{1g}\\B_{2g}\\A_{1u}\end{array}$                                                                                                                                                                                    | 1<br>1<br>1<br>1<br>1                       | 1<br>1<br>1<br>1                                                                                         | 1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>1<br>1<br>1<br>1                                                                                            | 1<br>1<br>1<br>1<br>1                                                                                                | 1<br>1<br>1<br>1<br>1                                                                                        | 1<br>1<br>1<br>1<br>1                                                                                                 | 1<br>1<br>2<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1<br>1<br>1<br>1<br>1                                                                                                                                             |
|                                                        | $\leq l \leq 2n-2;$<br>$\leq l \leq 2n-2;$                | $egin{array}{c} A_{2u} \ B_{1u} \ B_{2u} \ E_{l\sigma} \ E_{lu} \ E_{la} \ E_{la} \end{array}$                                                                                                                                                         | 1<br>1<br>2<br>2<br>2                       | $     \begin{array}{c}       1 \\       1 \\       2 \\       2 \\       -2 \\       2     \end{array} $ | $     \begin{array}{c}       1 \\       1 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\       2 \\     $ | 1<br>1<br>2<br>2<br>2                                                                                            | 1<br>1<br>2<br>2<br>2                                                                                                | $     \begin{array}{c}       1 \\       1 \\       2 \\       2 \\       -2 \\       2     \end{array} $     | $     \begin{array}{c}       1 \\       1 \\       2 \\       -2 \\       2     \end{array} $                         | $     \begin{array}{c}       1 \\       1 \\       2 \\       -2 \\       2     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1 \\ 1 \\ 2\cos\{2lp\pi/(2n-1)\} \\ 2\cos\{2lp\pi/(2n-1)\} \\ 2(-1)^{p} \\ 2(-1)^{n}$                                                                            |
| MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES | $\leq l \leq n-1;$ $\leq l \leq n-1;$                     | $E_{2\alpha}$ $G_{l\alpha}$ $E_{1\beta}$ $E_{2\beta}$ $G_{l\beta}$ $E_{1\gamma}$                                                                                                                                                                       | 2<br>4<br>2<br>2<br>4<br>2                  | $   \begin{array}{r}     -2 \\     -4 \\     2 \\     2 \\     4 \\     2 \\     2   \end{array} $       | $2 \\ 4 \\ -2 \\ -2 \\ -4 \\ 2 \\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $2 \\ 4 \\ 2 \\ 2 \\ 4 \\ -2 \\ 2$                                                                               | $2 \\ 4 \\ -2 \\ -2 \\ -4 \\ -2 \\ 2$                                                                                | $   \begin{array}{r}     -2 \\     -4 \\     -2 \\     -2 \\     -4 \\     2   \end{array} $                 | $     \begin{array}{r}       -2 \\       -4 \\       2 \\       2 \\       4 \\       -2 \\       2     \end{array} $ | $     \begin{array}{r}       -2 \\       -4 \\       -2 \\       -2 \\       -4 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\$ | $2(-1)^{p}  4\cos\{(2l-1)p\pi/(2n-1)\}  -2  -2  -2  -4\cos\{2lp\pi/(2n-1)\}  2  2$                                                                                |
| VIV                                                    | $\leq l \leq 2n-2;$ $\leq l \leq 2n-1;$                   | $ \begin{array}{c} & & & & & & & & & & \\ & & & & & & & & $                                                                                                                                                                                            | 2<br>2<br>2<br>2<br>2<br>2<br>2             | 2<br>2<br>-2<br>-2<br>-2<br>-2                                                                           | 2<br>2<br>2<br>-2<br>-2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $     \begin{array}{r}       -2 \\       -2 \\       2 \\       2 \\       -2 \\       -2 \\       \end{array} $ | $   \begin{array}{r}     -2 \\     -2 \\     -2 \\     -2 \\     -2 \\     -2 \\     -2 \\     -2 \\   \end{array} $ | 2<br>2<br>2<br>2<br>2<br>-2                                                                                  | $     \begin{array}{r}       -2 \\       -2 \\       -2 \\       -2 \\       -2 \\       2     \end{array} $          | $     \begin{array}{r}       -2 \\       -2 \\       -2 \\       2 \\       2 \\       2 \\       2     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 2\\ 2\cos \{2lp\pi/(2n-1)\}\\ 2\cos \{2lp\pi/(2n-1)\}\\ -2\cos \{(2l-1)p\pi/(2n-1)\}\\ -2\cos \{(2l-1)p\pi/(2n-1)\}\\ 2(-1)^p\end{array}$       |
| НЦ                                                     | $\leq l \leq n-1;$ $\leq l \leq n-1;$ $\leq l \leq 4n-2;$ | $ \begin{array}{c} \overset{G_{\alpha\gamma}}{\underset{G_{\alpha\gamma}}{G_{\alpha\gamma}}} \\ G_{\beta\gamma} \begin{cases} G_{\beta\gamma}^+ \\ G_{\beta\gamma}^- \\ G_{l\beta\gamma}^- \\ G_{l\beta\gamma} \\ E_{l\alpha\beta\gamma} \end{cases} $ | $2 \\ 4 \\ 2 \\ 2 \\ 4 \\ 2 \\ 2 \\ 4 \\ 2$ | $   \begin{array}{r}     -2 \\     -4 \\     2 \\     2 \\     4 \\     -2   \end{array} $               | $2 \\ 4 \\ -2 \\ -2 \\ -4 \\ -2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $     \begin{array}{r}       -2 \\       -4 \\       -2 \\       -2 \\       -4 \\       -2     \end{array} $    | $     \begin{array}{r}       -2 \\       -4 \\       2 \\       2 \\       4 \\       2     \end{array} $            | $     \begin{array}{r}       -2 \\       -4 \\       -2 \\       -2 \\       -4 \\       2     \end{array} $ | $2 \\ 4 \\ -2 \\ -2 \\ -4 \\ 2$                                                                                       | 2 $4$ $2$ $2$ $4$ $-2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{rl} 2(-1)^{p} \\ 4\cos\{(2l-1)p\pi/(2n-1)\} & \cdot \\ & -2 \\ & -2 \\ -4\cos\{2lp\pi/(2n-1)\} \\ -2\cos\{(2l-1)p\pi/(2n-1)\} & \cdot \end{array}$ |
| PHILOSOPHICAL<br>TRANSACTIONS                          |                                                           | $D_{(4n-2)\hbar}$                                                                                                                                                                                                                                      | Ε                                           |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |                                                                                                                      |                                                                                                              |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                   |

| SIE       | $\begin{array}{c} 1\leqslant p\leqslant 2n-2\\ 2\epsilon_{4n-2} \end{array}$                                                                       | $1 \leqslant p \leqslant 2n-2 \\ 2\epsilon_{4n-2}$                                                                                                          | $1 \leq p \leq 2n-1$<br>$4\epsilon_{(8n-4)/\mathrm{hcf}(4n-2,2\nu-1)}$                                                                                                                                                   | $1 \leq p \leq 2n-2$ $2\epsilon_{(4n-2)/\text{hef}}(4n-2, p)$                                                                                                                                                                                                                                           |                         |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| SO        | $P^{8n-4-2p}R^2 \ P^{2p}R^2$                                                                                                                       | $P^{8n-4-2p}Q^2R^2 \ P^{2p}Q^2R^2$                                                                                                                          | $P^{4n-3+2p}Q^2 \ P^{4n-1-2p}Q^2 \ P^{8n-3-2p} \ P^{2p-1}$                                                                                                                                                               | $P^{8n-4-2p}$ $P^{2p}$                                                                                                                                                                                                                                                                                  |                         |
|           | 1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                    | 1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                             | $ \begin{array}{c} 1 \\ -1 \\ -1 \\ -1 \\ 1 \\ -1 \\ -1 \end{array} $                                                                                                                                                    | 1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                              |                         |
| SCIENCES  | $1$ $2 \cos \{2lp\pi/(2n-1)\}$ $2 \cos \{2lp\pi/(2n-1)\}$ $2(-1)^{p}$ $2(-1)^{p}$ $4 \cos (2l-1)p\pi/(2n-1)\}$ $2$ $4 \cos \{2lp\pi/(2n-1)\}$ $-2$ | $1$ $2 \cos \{2lp\pi/(2n-1)\}$ $2 \cos \{2lp\pi/(2n-1)\}$ $2(-1)^{p}$ $2(-1)^{p}$ $4 \cos \{(2l-1)p\pi/(2n-1)\}$ $-2$ $-2$ $-4 \cos \{2lp\pi/(2n-1)\}$ $-2$ | $ \begin{array}{r} -1 \\ -1 \\ 2\cos\{l(2p-1)\pi/(2n-1)\} \\ 2\cos\{l(2p-1)\pi/(2n-1)\} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \end{array} $                                                                                 | $1 \\ 1 \\ 2 \cos \{2lp\pi/(2n-1)\} \\ 2 \cos \{2lp\pi/(2n-1)\} \\ 2(-1)^{p} \\ 2(-1)^{p} \\ 4 \cos \{(2l-1)p\pi/(2n-1)\} \\ 2 \\ 2 \\ 4 \cos \{2lp\pi/(2n-1)\} \\ 2 \\ 2 \\ 2 \\ 4 \\ 2 \\ 2 \\ 4 \\ 2 \\ 2 \\ 4 \\ 2 \\ 2 \\ 4 \\ 2 \\ 2 \\ 2 \\ 4 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$ | 2<br>- 2                |
| SOCIETY A | $\begin{array}{c} 2\cos\{(2l-1)p\pi/(2n-1)\}\\ 2(-1)^{p+1}\\ 2(-1)^{p+1}\end{array}$                                                               | $\begin{array}{c} -2\cos\{(2l-1)p\pi/(2n-1)\}\\ 2(-1)^{p+1}\\ 2(-1)^{p+1}\\ -4\cos\{(2l-1)p\pi/(2n-1)\}\\ 2\\ 2\\ 4\cos\{2lp\pi/(2n-1)\}\end{array}$        | $\begin{array}{c} -2\\ 2\cos\{l(2p-1)\pi/(2n-1)\}\\ 2\cos\{l(2p-1)\pi/(2n-1)\}\\ 2\cos\{(2l-1)(2p-1)\pi/(4n-2)\}\\ 2\cos\{(2l-1)(2p-1)\pi/(4n-2)\}\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 2\cos\{(2l-1)(2p-1)\pi/(4n-2)\}\end{array}$ | $2\cos\{(2l-1)p\pi/(2n-1)\}$ $2(-1)^{p}$ $2(-1)^{p}$ $4\cos\{(2l-1)p\pi/(2n-1)\}$ $2$ $2$ $4\cos\{2lp\pi/(2n-1)\}$                                                                                                                                                                                      | 2i - 2i = 2i = 2i = -2i |
|           |                                                                                                                                                    |                                                                                                                                                             | $\frac{A^{2p-1}}{A^{2p-1}}$                                                                                                                                                                                              | $\frac{1}{A^{2p}}$                                                                                                                                                                                                                                                                                      |                         |

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

PHILOSOPHICAL THE ROYAL MATHEMATICAL, TRANSACTIONS SOCIETY Sciences

| PHICAL THE ROYAL                                       | TABLE 3 (cont.)<br>$1 \le p \le 4n-2$<br>$4\epsilon_{(4n-2)/\text{hef}(4n-2, 2p-1)}$<br>$P^{4n-1-2p}Q^3R^3$<br>$P^{4n-3+2p}Q^3R$<br>$P^{8n-3-2p}QR^3$<br>$P^{2p-1}QR$      | $0 \leq p \leq 4n-3$<br>$4e_{(8n-4)/\text{hcf }(2n-1, p)}$<br>$P^{4n-2-2p}Q^3R^3$<br>$P^{4n-2+2p}Q^3R$<br>$P^{8n-4-2p}QR^3$<br>$P^{2p}QR$                                                                                         | $\begin{split} 1 \leqslant p \leqslant 2n-1 \\ 4 \varepsilon_{(8n-4)/\text{hcf}/(4n-2, 2p-1)} \\ P^{4n-3+2p}Q^2R^2 \\ P^{4n-1-2p}Q^2R^2 \\ P^{8n-3-2p}R^2 \\ P^{2p-1}R^2 \end{split}$ | $\begin{array}{l} \left(8n-4\right)\epsilon_4\\ 0\leqslant q\leqslant 4n-3\\ P^{2q}R^3\\ P^{2q}R\end{array}$         |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| PHILOSOP<br>TRANSACT                                   | 1<br>1<br>1<br>1<br>-1                                                                                                                                                     | 1<br>1<br>-1<br>-1<br>-1                                                                                                                                                                                                          | 1<br>1<br>-1<br>-1<br>1                                                                                                                                                               | $     \begin{array}{r}       1 \\       -1 \\       -1 \\       1 \\       1     \end{array} $                       |
|                                                        | $-1 \\ -1 \\ -1 \\ 2\cos\{l(2p-1)\pi/(2n-1)\} \\ 2\cos\{l(2p-1)\pi/(n-1)\} \\ 0$                                                                                           | $-1 \\ 1 \\ 2\cos\{2lp\pi/(2n-1)\} \\ -2\cos\{2lp\pi/(2n-1)\} \\ 0$                                                                                                                                                               | $1 \\ -1 \\ -1 \\ 2\cos\{l(2p-1)\pi/(2n-1)\} \\ 2\cos\{l(2p-1)\pi/(2n-1)\} \\ 0$                                                                                                      | $     \begin{array}{c}       -1 \\       -1 \\       1 \\       0 \\       0 \\       0 \\       0     \end{array} $ |
| NATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES |                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                        | 0<br>0<br>0<br>0<br>0<br>0<br>- 2                                                                                                                                                     | $ \begin{array}{c} 0 \\ 0 \\ 2 \\ -2 \\ 0 \\ 0 \end{array} $                                                         |
| HE ROYAL A OCIETY                                      | $\begin{array}{c} 2i\sin\{l(2p-1)\pi/(2n-1)\}\\ 2i\sin\{(2l-1)(2p-1)\pi/(2n-1)\}\\ 2i\sin\{(2l-1)(2p-1)\pi/(2n-1)\}\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$ | $0$ 2i sin {2 $lp\pi/(2n-1)$ }<br>- 2i sin {2 $lp\pi/(2n-1)$ }<br>2i sin {(2 $l-1$ ) (2 $p+1$ ) $\pi/(4n-2)$ }<br>- 2i sin {(2 $l-1$ ) (2 $p+1$ ) $\pi/(4n-2)$ }<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | $2\cos\{(2l-1)(2p-1)\pi/(4n-2)\}$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   |
| HICAL T                                                | $\frac{2\sin\{(2l-1)(2p-1)\pi/(4n-2)\}}{A^{2p-1}BC}$<br>1 $\leq p \leq 2n-1$                                                                                               | $\frac{2\sin\{(2l-1)p\pi/(2n-1)\}}{A^{2p}BC}$ $0 \le p \le 2n-2$                                                                                                                                                                  | $-2\cos\{(2l-1)(2p-1)\pi/(4n-2)\}$                                                                                                                                                    | $0$ $A^{2q}C$ $0 \le q \le n$                                                                                        |

ATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

PHILOSOPHI TRANSACTIC

| PHILOSOPHICAL<br>TRANSACTIONS      | $P^2Q^2R^3 \ P^{2q}Q^2R$ | $P^{8n-2q+1}Q^2R^3 \ P^{8n-2q+1}R$ | $P^{8n-2q+1}Q^2R \ P^{8n-2q+1}R^3$ | $P^{4n-4q}QR^2 \ P^{4n-4q}Q^3 \ P^{4n-4q}Q$ | $P^{4n-4q+2}QR^2  onumber P^{4n-4q+2}Q^3  onumber P^{4n-4q+2}Q^3  onumber P^{4n-4q+2}Q$ | $P^{8n-1-4q}QR^2 \ P^{8n-3-4q}Q^3 \ P^{8n-3-4q}Q$ | $P^{8n-3-4q}QR^2 \ P^{8n-1-4q}Q^3 \ P^{8n-1-4q}Q$ |
|------------------------------------|--------------------------|------------------------------------|------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
|                                    | 1                        | 1                                  | 1                                  | 1                                           | 1                                                                                       | 1                                                 | 1                                                 |
| SC SC                              | 1                        | -1                                 | -1                                 | -1                                          | -1                                                                                      | -1                                                | -1                                                |
| 2Z                                 | -1                       | 1                                  | 1                                  | -1                                          | -1                                                                                      | 1                                                 | 1                                                 |
| ΗŞ                                 | 1                        | -1                                 | -1                                 | 1                                           | • 1                                                                                     | -1                                                | -1                                                |
| ЧТ                                 | 1                        | 1                                  | 1                                  | -1                                          | -1                                                                                      | -1                                                | -1                                                |
|                                    | -1                       | -1                                 | -1                                 | 1                                           | 1                                                                                       | 1                                                 | 1                                                 |
|                                    | -1                       | 1                                  | 1                                  | 1                                           | 1                                                                                       | -1                                                | -1                                                |
|                                    | 1                        | -1                                 | -1                                 | -1                                          | -1                                                                                      | 1                                                 | 1                                                 |
|                                    | 0                        | 0                                  | 0                                  | 0                                           | 0                                                                                       | 0                                                 | 0                                                 |
|                                    | 0                        | 0                                  | 0                                  | 0                                           | 0                                                                                       | 0                                                 | 0                                                 |
|                                    | 0                        | 0                                  | 0                                  | 2                                           | -2                                                                                      | 0                                                 | 0                                                 |
|                                    | 0                        | 0                                  | 0                                  | $-\frac{2}{2}$                              | $\frac{2}{2}$                                                                           | 0                                                 | 0                                                 |
| ICAI<br>RIN                        | 0                        | 0                                  | 0                                  | 0<br>0                                      | 0                                                                                       | 0                                                 | 0                                                 |
| MATICAL,<br>AL<br>INEERING<br>ES   | - 2                      | 0                                  | 0                                  | 0                                           | 0                                                                                       | 0                                                 | 0                                                 |
|                                    | $2 \\ 0$                 | 0                                  | 0                                  | 0                                           | 0                                                                                       | 0                                                 | 0                                                 |
| MATHI<br>PHYSIO<br>& ENG<br>SCIENO | 0                        | 0                                  | 0                                  | 0                                           | 0                                                                                       | 0                                                 | 0                                                 |
| 2E & N                             | 0                        | 0                                  | 0                                  | 0                                           | 0                                                                                       | 0                                                 | 0                                                 |
|                                    | 0                        | 0                                  | 0                                  | 0                                           | 0                                                                                       | 0                                                 | 0                                                 |
|                                    | 0                        | 0                                  | 0                                  | 0                                           | 0                                                                                       | 0                                                 | 0                                                 |
|                                    | 0                        | 0                                  | 0                                  | 0                                           | 0                                                                                       | 0                                                 | 0                                                 |
| <b>_</b> `                         | 0                        | 0                                  | 0                                  | 0                                           | 0                                                                                       | 0                                                 | 0                                                 |
| $\mathbf{A}$                       | 0                        | Ő                                  | 0                                  | 0                                           | 0                                                                                       | 2i                                                | -2i                                               |
| $\geq$                             | ů<br>0                   | Ő                                  | Ő                                  | Ő                                           | 0                                                                                       | -2i                                               | 2i                                                |
| OH                                 | Ő                        | Ő                                  | Ő                                  | ő                                           | Ő                                                                                       | 0                                                 | 0                                                 |
| R                                  | ů<br>0                   | 2i                                 | -2i                                | Ő                                           | Ő                                                                                       | Ő                                                 | Ő                                                 |
| шŪ                                 | 0                        | -2i                                | 2i                                 | 0                                           | 0                                                                                       | 0                                                 | 0                                                 |
| ΗŎ                                 | 0                        | 0                                  | 0                                  | 0                                           | 0                                                                                       | 0                                                 | 0                                                 |
| T I<br>S C                         | 0                        | 0                                  | 0                                  | 0                                           | 0                                                                                       | 0                                                 | 0                                                 |
| -                                  | <b></b>                  | $A^{4n-2q-1}C$                     |                                    | $A^{4n-4-4q}B$                              | $A^{4n-4q-2}B$                                                                          | $A^{4n-4q+1}B$                                    | $A^{4n-4q-1}B$                                    |
| PHILOSOPHICAL<br>TRANSACTIONS      |                          | $1 \leq q \leq 2n - 1$             |                                    | $0 \leqslant q \leqslant n-1$               | $1 \leq q \leq n-1$                                                                     | $1 \leqslant q \leqslant n$                       | $1 \leqslant q \leqslant n-1$                     |

THE ROYAL Ð SOCI  $(8n-4) \epsilon_4$  $(8n-4)\epsilon_4$  $(8n-4)\epsilon_4$  $(8n-4) \epsilon_4$  $(8n-4) \epsilon_4$  $\begin{array}{c} 0 \leqslant q \leqslant 2n-2 \\ P^{4n-4q}Q^3R^2 \end{array}$  $0\leqslant q\leqslant 4n-3$  $1\leqslant q\leqslant 4n-2$  $1\leqslant q\leqslant 4n-2$  $0\leqslant q\leqslant 2n-2$  $P^{4n-4q+2}Q^{3}R^{2}$  $P^{4n-4q}QR^2$  $P^{4n-4q+2}QR^2$ 



MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

250

L. L. BOYLE AND KERIE F. GREEN

 $(8n-4) \epsilon_4$ 

 $1\leqslant q\leqslant 2n-1$ 

 $P^{8n-1-4q}Q^3R^2$ 

 $(8n-4)\epsilon_4$ 

 $1 \leqslant q \leqslant 2n-1 \\ P^{8n-3-4q}Q^3R^2$ 



| 4) $e_4$<br>$\leq 2n - 1$<br>$^{-4q}Q^3R^2$<br>$^{-4q}QR^2$<br>$^{1-4q}Q^3$<br>$^{1-4q}Q$ | (128 <i>n</i> -64) elements<br>$P^{8n-4} = Q^4 = R^4 = E$ $QP = P^{4n-3}Q^3$ $RP = P^{8n-5}R$ $RQ = QR^3$                                                                             |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2                                  | $\left. \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                    |
| )<br>)<br>)<br>)<br>)<br>)<br>)                                                           | $\begin{cases} \alpha = -1; \beta = +1; \gamma = +1 \\ \alpha = +1; \beta = -1; \gamma = +1 \end{cases}$                                                                              |
| )<br>)<br>)<br>2i<br>2i<br>2i                                                             | $\begin{cases} \alpha = +1; \ \beta = +1; \ \gamma = -1 \\ \beta = -1; \ \beta = -1; \ \gamma = +1 \\ \alpha = -1; \ \beta = +1; \ \gamma = -1 \end{cases}$                           |
| ))))<br>) $a^{-1}B \le n-1$                                                               | $\begin{cases} \alpha = +1; \beta = -1; \gamma = -1 \\ \beta = -1; \beta = -1; \gamma = -1 \\ \hline A^{4n-2} = B^2 = C^2 = E \\ BA = A^{4n-3}B \\ CA = AC \\ CB = BC \\ \end{cases}$ |

ΕN

| HHEMATICAL,<br>SICAL<br>NIGINEERING        | 3               |                                                                               |                                                      |                                                                                                   |                                                        |                                                                  | 48 elements         | $\begin{array}{l} P^4 = Q^4 = R^3 = T^4 = E \\ P^2 = Q^2 = T^2 \\ QP = P^3Q; RP = QR \\ RQ = PQR; TR = RT \\ TP = PT; TQ = QT \end{array}$ | a = +1                                                                    | a = -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                           | $A^{2} = B^{2} = C^{3} = I^{2} = E$<br>BA = AB; CA = BC<br>CB = ABC; IA = AI<br>IB = BI; IC = CI |
|--------------------------------------------|-----------------|-------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| MATHEI<br>PHYSIC<br>& ENGI                 | OCIENC          |                                                                               | 1                                                    |                                                                                                   |                                                        |                                                                  | $4\epsilon_{12}$    | QRT<br>PQRT<br>PRT<br>P2RT                                                                                                                 | - 3 3 0 - I                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 10*<br>io                                                                               | ACI<br>BCI<br>ABCI                                                                               |
| VT                                         | nents           | $ \begin{array}{l} {}^{z}R^{3}=E\\ Q^{2}\\ RP=QR\\ PQR \end{array} $          |                                                      |                                                                                                   | $a^{2} = C^{3} = E$ $= BA$ $= BC$ $= ABC$              |                                                                  | $4\epsilon_{12}$    | PR <sup>2</sup> T<br>QR <sup>2</sup> T<br>PQR <sup>2</sup> T<br>R <sup>2</sup> T                                                           |                                                                           | , α<br>, α<br>, α<br>, α<br>, α<br>, α<br>, α<br>, α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100<br>- i00 *                                                                            | C²I<br>AC²I<br>BC²I<br>ABC²I                                                                     |
| TRANSACTIONS SOCIETY                       | 24 elements     | $P^{4} = Q^{4} = R^{3} = E$ $P^{2} = Q^{2}$ $QP = P^{3}Q; RP = Q.$ $RQ = PQR$ | $\alpha = +1$                                        | $\alpha = -1$                                                                                     | $A^{2} = B^{2} = C^{3}$ $AB = BA$ $CA = BC$ $CB = ABC$ |                                                                  | $4\epsilon_{12}$    | P3R2T<br>P2QR2T<br>P3QR2T<br>P2QR2T<br>P2R2T                                                                                               | - 3 3 0<br>                                                               | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 10<br>i@*                                                                               |                                                                                                  |
| HHT IN SOC                                 | 463             | $egin{array}{c} R \\ P^2 Q R \\ P^3 Q R \\ P^3 R \end{array}$                 | 3 3 0                                                |                                                                                                   | ں<br>ن                                                 |                                                                  | $4\epsilon_{12}$    | P2QRT<br>P3QRT<br>P3RT<br>RT<br>RT                                                                                                         | - 330-<br>-                                                               | ; *<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • 100<br>• 100<br>•                                                                       | CI                                                                                               |
| SOPHICA                                    | 463             | R <sup>2</sup><br>PR <sup>2</sup> I<br>QR <sup>2</sup><br>PQR <sup>2</sup>    | - * 30                                               | ×.                                                                                                | $C^2$<br>$AC^2$<br>$BC^2$<br>$ABC^2$                   |                                                                  | $6\epsilon_2$       | $P^{3}_{P}QT$<br>$P^{2}_{P}QT$<br>$P^{2}_{P}T$<br>QT<br>QT<br>PT                                                                           |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • •                                                                                       | AI<br>BI<br>ABI                                                                                  |
| <b>PHILO</b><br><b>TRANS</b>               | 46 <b>6</b>     | $P^3QR^2$<br>$P^3R^2$<br>$P^2QR^2$<br>$P^2R^2$                                | - 3 3 0                                              | н <u>з</u> э                                                                                      |                                                        |                                                                  | $1e_4$              | $P^{2}T$                                                                                                                                   |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 2:                                                                                      |                                                                                                  |
|                                            | $4\epsilon_6$   | PR<br>QR<br>PQR<br>P²R                                                        |                                                      | 1 3 3<br>*                                                                                        | AC<br>BC<br>ABC                                        |                                                                  | $1\epsilon_4$       | Т                                                                                                                                          |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27.<br>27.                                                                                | Ι                                                                                                |
| VTICAL,<br>ERING                           | 6e4             | $P, P^3$<br>$Q, P^2Q$<br>$PQ, P^3Q$                                           |                                                      | 000                                                                                               | $A \\ B \\ AB \\ AB \\$                                |                                                                  | $4\epsilon_{\rm 6}$ | $P^2QR^2$<br>$P^2R^2$<br>$P^3R^2$<br>$P^3QR^2$                                                                                             |                                                                           | * 30 * 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | а<br>*Э                                                                                   |                                                                                                  |
| MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING | 162             | $P_{2} P_{1}$                                                                 |                                                      | 01 01 01<br>                                                                                      |                                                        |                                                                  | $4\epsilon_6$       | PQR<br>P2R<br>QR<br>PR                                                                                                                     | - 3*0-                                                                    | 3304433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *<br>33                                                                                   | AC<br>BC<br>ABC                                                                                  |
| V                                          | 16 <sub>1</sub> | E                                                                             |                                                      |                                                                                                   | E                                                      | $(\omega = \mathrm{e}^{\frac{2}{3}\pi\mathrm{i}})$               | $4\epsilon_3$       | $PR^2$<br>$QR^2$<br>$PQR^2$<br>$R^2$                                                                                                       | 1 3 3 0 1<br>* 3 3 0 1                                                    | * 30-1-133<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -ω<br>+ω-                                                                                 | $C^{2}$ $AC^{2}$ $BC^{2}$ $ABC^{2}$                                                              |
| THE ROYAL                                  | -               | $\mathscr{R}(T)$                                                              | $E egin{pmatrix} A \\ E^+ \\ E^- \\ T \end{bmatrix}$ | $G_{rac{1}{2}} iggl\{ G_{rac{1}{2}} G_{rac{1}{2}} iggl\{ G_{rac{1}{2}} G_{rac{1}{2}} iggr\}$ | T                                                      |                                                                  | $4\epsilon_3$       | $egin{array}{c} P^{2}QR \\ P^{3}QR \\ P^{3}R \\ R \end{array}$                                                                             | 1 3 3 0 1                                                                 | 330 <b></b> 33<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | * 00 -                                                                                    | C                                                                                                |
| THE RO                                     |                 |                                                                               |                                                      | 0                                                                                                 |                                                        |                                                                  | $6\epsilon_4$       | $PQ, P^{3}Q$<br>$Q, P^{2}Q$<br>$P, P^{3}$                                                                                                  |                                                                           | 0 0 0 0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0                                                                                       | $egin{array}{c} A \\ B \\ AB \end{array}$                                                        |
| PHILOSOPHICAL<br>TRANSACTIONS              |                 |                                                                               |                                                      |                                                                                                   |                                                        | $\{E, T\}$                                                       | $1\epsilon_2$       | $P^2$                                                                                                                                      |                                                                           | <del></del> `๓ ๗ ๗ ๗ ๗<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 2                                                                                       | $E$ $(\omega = e^{\frac{2}{3}\pi t})$                                                            |
| ANSAC                                      | 5               |                                                                               |                                                      |                                                                                                   |                                                        | $\mathscr{R}(T)$ ×                                               |                     | E                                                                                                                                          |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           | (0)<br>(0)                                                                                       |
| PHI<br>TRA                                 |                 |                                                                               |                                                      |                                                                                                   |                                                        | $\mathscr{R}_{\cdot}(T_{\cdot}) = \mathscr{R}(T) 	imes \{E, T\}$ |                     | $\mathscr{R}_{2}(T_{h})$                                                                                                                   | $E_g \begin{cases} A_g^a \\ E_{g}^a \\ E_g^a \\ T_g^a \\ A_u \end{cases}$ | $E_{a'} \begin{bmatrix} E_{a'} \\ E_{a'} \\ G_{a'} \\ G$ | $G''_{\alpha} \left\{ \begin{array}{c} G'^+_{\alpha} \\ G'^{\alpha} \end{array} \right\}$ | $T_h$                                                                                            |
|                                            |                 |                                                                               |                                                      |                                                                                                   |                                                        |                                                                  |                     |                                                                                                                                            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17-9                                                                                      | 2                                                                                                |

## REPRESENTATIONS Cetypelisten Of GROUPS

251

|                                                        |                 | 2               | 04                                                                                                                                         | L. 1          | . DO I                    | LE AND KERTE F. GREEN                                                                             |                 |                                                                                                                |                                                                                            |               |                                                                              |                                                                                                        |
|--------------------------------------------------------|-----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------|---------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES |                 | 48 elements     | $P^{4} = Q^{4} = R^{3} = S^{4} = E$ $P^{2} = Q^{2} = S^{2}$ $QP = P^{3}Q; RP = QR$ $RQ = P^{3}QR; SP = P^{2}QS$ $SQ = P^{3}S; SR = R^{2}S$ | $\alpha = +1$ | $\alpha = -1$             | $A^{2} = B^{2} = C^{3} = D^{2} = E$ $BA = AB; CA = BC$ $CB = ABC; DA = BD$ $DB = AD; DC = C^{2}D$ | 48 elements     | $P^4 = Q^4 = R^3 = S^2 = E$ $P^2 = Q^2$ $QP = P^3Q; RP = QR$ $RQ = PQR; SP = P^2QS$                            | $SQ = P^3S; SR = R^2S$                                                                     | $\alpha = +1$ | $\alpha = -1$                                                                | $A^{2} = B^{2} = C^{3} = D^{2} = E$<br>BA = AB; CA = BC<br>CB = ABC; DA = BD<br>$DB = AD; DC = C^{2}D$ |
| THE ROYAL A SOCIETY                                    |                 | $6\epsilon_8$   | QS, P <sup>3</sup> S<br>PRS, PQRS<br>P2QR <sup>2</sup> S, P3QR <sup>2</sup> S                                                              | 0             | $-\sqrt{2}$<br>$\sqrt{2}$ | BD<br>ACD, ABCD                                                                                   | $6\epsilon_4$   | QS<br>PsG<br>PRS<br>P2QS2                                                                                      | PQR²S<br>P³QRS                                                                             | 1 1 0 -       |                                                                              | BD<br>ACD<br>ABC <sup>3</sup> D                                                                        |
|                                                        |                 | $6\epsilon_8$   | PS, P2QS<br>QR2S, PQR2<br>P2QS, P2QR2                                                                                                      | 0             | $-\frac{\sqrt{2}}{0}$     | $AD BC^2D, ABC^2D$                                                                                | $6\epsilon_4$   | PsRD<br>PsQS<br>PsQS<br>PsQS<br>PsQS                                                                           | QR <sup>2</sup> S<br>P <sup>3</sup> RS                                                     | 1 1 0 -       | -1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                                       | AD<br>ABCD<br>BC <sup>2</sup> D                                                                        |
| PHILOSOPHICAL<br>TRANSACTIONS                          |                 | $12\epsilon_4$  | S, P2S<br>PQS, P2QS<br>R2S, P2R2S<br>R2S, P2R2S<br>PR2S, P2R2<br>QRS, P2QRS<br>QRS, P2QRS                                                  | 1 1 0 1 1     | 000                       | $D \\ ABD \\ C^2 D \\ CD \\ AC^2 D \\ BCD \\ BCD$                                                 | $12\epsilon_2$  | S; P <sup>2</sup> S<br>PQS; P <sup>3</sup> QS<br>R <sup>2</sup> S; RS<br>PR <sup>2</sup> S; P <sup>2</sup> QRS | QRS; P <sup>3</sup> R <sup>2</sup> S<br>P <sup>2</sup> RS; P <sup>2</sup> R <sup>2</sup> S |               | - <del>-</del> 0 0 0<br>                                                     | $egin{array}{c} D \\ ABD \\ C^2D; CD \\ AC^2D \\ BCD \end{array}$                                      |
| ט ז.                                                   | TABLE 3 (cont.) | $8\epsilon_3$   | $R^{2}_{*}, R$<br>$PR, PQR^{2}$<br>$QR, P^{3}R^{2}$<br>$P^{3}QR, P^{2}QR^{2}$                                                              | 1 1 1 0 0     |                           | $C^2, C$<br>$AC, ABC^2$<br>BC                                                                     | $8\epsilon_3$   | R <sup>2</sup> , R<br>PR <sup>2</sup> , P <sup>2</sup> QR                                                      | $QR^2$ , $P^3QR$<br>$PQR^2$ , $P^3R$                                                       |               | 0 - 1 - 0 0                                                                  | $C_3, C$<br>$AC^2$<br>$BC^3$<br>$ABC^3$                                                                |
| MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES |                 | $8\epsilon_{6}$ | $PR^{2}, P^{2}QR$<br>$QR^{2}, PQR$<br>$P^{2}R, P^{2}R^{2}$<br>$P^{3}R, P^{3}QR^{2}$                                                        | 1 1 1 0 0     |                           | $AC^{2}$<br>$BC^{2},ABC$                                                                          | 86 <sub>6</sub> | $PR, P^3QR^2$<br>$QR, P^3R^2$                                                                                  | $PQR, P^2QR^2$<br>$P^2R, P^2R^2$                                                           |               | 00777                                                                        | AC<br>BC<br>ABC                                                                                        |
| THE ROYAL A SOCIETY                                    |                 | $6\epsilon_4$   | $P, P^{3}$<br>$Q, P^{2}Q$<br>$PQ, P^{3}Q$                                                                                                  |               | 000                       | $A \\ B \\ A \\ B \\ $                                              | $6\epsilon_4$   | $P,P^3$                                                                                                        | $Q, P^2Q$<br>$PQ, P^3Q$                                                                    |               | - <del>-</del> 0 0 0<br>                                                     | A = B B B B B B B B B B B B B B B B B B                                                                |
| HICAL THE<br>TIONS SOC                                 |                 | $1\epsilon_2$   | $P^2$                                                                                                                                      |               | <br>0 0 4                 |                                                                                                   | $1\epsilon_2$   |                                                                                                                | $P^2$                                                                                      |               | 0 0 <del>4</del> 01 01<br>                                                   |                                                                                                        |
| PHILOSOPHICAL<br>TRANSACTIONS                          |                 | $1\epsilon_1$   | E                                                                                                                                          |               | 004                       | E                                                                                                 | $ 1e_1 $        |                                                                                                                | E                                                                                          |               | v w 4 0 0                                                                    | म                                                                                                      |
|                                                        |                 |                 | $\mathscr{R}_1(0)$                                                                                                                         | $A_1^A$       | 62 E E                    | 0                                                                                                 |                 | •<br>•                                                                                                         | $\mathscr{M}_{2}(O)$                                                                       | $H_1^A$       | $G_{rac{1}{2}} egin{cases} I_1\\ G_2\\ G_4\\ G_4\\ G_4\\ G_4 \end{bmatrix}$ | 0                                                                                                      |

Downloaded from rsta.royalsocietypublishing.org

### 252

### L. L. BOYLE AND KERIE F. GREEN

| MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      | R                                                                                           | EPR                                                                                                        | ESEI                                                                                             | NTATIO                                                                                                                                                     | NS OF PO                                                                                                                     | INT GRO                                                                                                         | OUPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 253                                                                                                                                                                                                                                                                                              |                        |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| TRANSACTIONS SOCIETY                                                                   | $\hat{\ell}_1(O_h)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1ε <sub>1</sub>                                                                      | $1\epsilon_2$<br>$P^2$                                                                      | $1\epsilon_2$ $S^2$                                                                                        | $1\epsilon_2$<br>$P^2S^2$                                                                        | $6e_4$<br>$P, P^3$<br>$Q, P^2Q$<br>$PQ, P^3Q$                                                                                                              | $8\epsilon_6$<br>$PR, P^3QR^2$<br>$QR, P^3R^2$<br>$PQR, P^2QR^2$<br>$P^2R, P^2R^2$                                           | $R^2, R$<br>$PR^2, P^2QR$<br>$QR^2, P^3QR$<br>$PQR^2, P^3R$                                                     | 24€4<br>S, S <sup>3</sup><br>PQS, PQS <sup>3</sup><br>R <sup>2</sup> S, R <sup>2</sup> S <sup>3</sup><br>PR <sup>2</sup> S, P <sup>2</sup> S <sup>3</sup><br>P <sup>2</sup> RS, P <sup>2</sup> RS <sup>3</sup><br>P <sup>2</sup> S, P <sup>2</sup> S <sup>3</sup><br>P <sup>3</sup> QS, P <sup>3</sup> QS <sup>3</sup><br>P <sup>2</sup> R <sup>2</sup> S, P <sup>2</sup> R <sup>2</sup> S <sup>3</sup><br>P <sup>3</sup> R <sup>2</sup> S, P <sup>3</sup> R <sup>2</sup> S <sup>3</sup><br>P <sup>2</sup> QRS, P <sup>2</sup> QRS <sup>3</sup><br>RS, RS <sup>3</sup> | 12e <sub>8</sub><br>PS, QS <sup>3</sup><br>P <sup>2</sup> QS, P <sup>3</sup> S <sup>3</sup><br>PQRS, PRS <sup>3</sup><br>P <sup>3</sup> RS, P <sup>3</sup> QR <sup>2</sup> S, PQR <sup>2</sup> S <sup>3</sup><br>P <sup>3</sup> QR <sup>2</sup> S, P <sup>2</sup> QR <sup>2</sup> S <sup>3</sup> | P<br>P1<br>P3(<br>P2Q1 |
| PHILOSOPHICAL THE ROYAL A MATHEMATICAL PHILOSOPHICAL TRANSACTIONS SOCIETY A Science TR | $\begin{array}{c} A_{1g} \\ A_{2g} \\ E_{g} \\ T_{1g} \\ T_{2g} \\ A_{1u} \\ A_{2u} \\ E_{u} \\ T_{1u} \\ T_{2u} \\ G_{\alpha} \\ K_{\alpha}^{+} \\ E_{\beta} \\ K_{\alpha}^{-} \\ E_{\beta} \\ K_{\alpha}^{-} \\ E_{\beta} \\ K_{\alpha}^{-} \\ E_{\alpha} \\ \beta_{g} \\ E_{\alpha}^{-} \\ \beta_{g} \\$ | $ \begin{array}{c} 1\\1\\2\\3\\1\\1\\2\\3\\4\\4\\2\\2\\6\\2\\2\\2\\4\\4\end{array} $ | $\begin{array}{c}1\\1\\2\\3\\3\\1\\1\\2\\3\\-4\\-4\\2\\2\\6\\-2\\-2\\-2\\-4\\-4\end{array}$ | $ \begin{array}{c} 1\\1\\2\\3\\3\\1\\1\\2\\-2\\-2\\-2\\-2\\-2\\-2\\-2\\-2\\-2\\-2\\-2\\-4\\-4\end{array} $ | $ \begin{array}{c} 1\\1\\2\\3\\3\\1\\1\\2\\3\\-4\\-4\\-4\\-2\\-2\\-2\\2\\2\\2\\4\\4\end{array} $ | $ \begin{array}{c} 1\\ 1\\ 2\\ -1\\ -1\\ -1\\ 1\\ 2\\ -1\\ -1\\ -1\\ 0\\ 0\\ 0\\ 2\\ 2\\ 2\\ 2\\ -2\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$ | $ \begin{array}{c} 1\\ -1\\ 0\\ 0\\ 1\\ -1\\ 0\\ 0\\ 2\\ -1\\ -1\\ -1\\ 2\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1$ | $ \begin{array}{c} 1\\ 1\\ -1\\ 0\\ 0\\ 1\\ -1\\ 0\\ 0\\ -2\\ 1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\$ | $\begin{array}{c} 1 \\ -1 \\ 0 \\ -1 \\ 1 \\ 1 \\ -1 \\ 0 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                    |                        |

| AL                                   |                                                                                                                                                                                                                                                                                              |                                                                                                           |                                                                                                                                                                                                                                                                                           | ]                                                                                                                                                                                                                                                           | Table 3 (a              | cont.)                         |                                                                                                                                                                                                                                              |                                                                                                   |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| IE ROY.<br>CIETY                     | $12\epsilon_{s}$                                                                                                                                                                                                                                                                             | 6e4                                                                                                       | 8e <sub>6</sub>                                                                                                                                                                                                                                                                           | 86 <sub>6</sub>                                                                                                                                                                                                                                             | $2\epsilon_2$           | $2\epsilon_2$                  | $12\epsilon_4$                                                                                                                                                                                                                               | 8e,                                                                                               |
|                                      | QS, PS <sup>3</sup><br>P <sup>3</sup> S, P <sup>2</sup> QS <sup>3</sup><br>PRS, PQRS <sup>3</sup><br><sup>30</sup> QRS, P <sup>3</sup> RS <sup>3</sup><br><sup>2</sup> QR <sup>2</sup> S, QR <sup>2</sup> S <sup>3</sup><br>QR <sup>2</sup> S, P <sup>3</sup> QR <sup>2</sup> S <sup>3</sup> | $PS^2, P^3S^2$<br>$QS^2, P^2QS^2$<br>$PQS^2, P^3QS^2$                                                     | PRS <sup>2</sup> , P <sup>3</sup> QR <sup>2</sup> S <sup>2</sup><br>QRS <sup>2</sup> , P <sup>3</sup> R <sup>2</sup> S <sup>2</sup><br>PQRS <sup>2</sup> , P <sup>2</sup> QR <sup>2</sup> S <sup>2</sup><br>P <sup>2</sup> RS <sup>2</sup> , P <sup>2</sup> R <sup>2</sup> S <sup>2</sup> | R <sup>2</sup> S <sup>2</sup> , RS <sup>2</sup><br>PR <sup>2</sup> S <sup>2</sup> , P <sup>2</sup> QRS <sup>2</sup><br>QR <sup>2</sup> S <sup>2</sup> , P <sup>3</sup> QRS <sup>2</sup><br>PQR <sup>2</sup> S <sup>2</sup> , P <sup>3</sup> RS <sup>2</sup> | $T P^2 S^2 T$           | $P^2T$<br>$S^2T$               | PT, P <sup>3</sup> T<br>QT, P <sup>2</sup> QT<br>PQT, P <sup>3</sup> QT<br>PS <sup>2</sup> T, P <sup>3</sup> S <sup>2</sup> T<br>QS <sup>2</sup> T, P <sup>2</sup> QS <sup>2</sup> T<br>PQS <sup>2</sup> T, P <sup>3</sup> QS <sup>2</sup> T | PI<br>QI<br>PQ<br>P <sup>2</sup> J<br>R <sup>2</sup><br>PR <sup>2</sup><br>QR <sup>2</sup><br>PQR |
| iL<br>id                             | $     \begin{array}{c}       1 \\       -1 \\       0 \\       1 \\       -1 \\       1     \end{array} $                                                                                                                                                                                    | $     \begin{array}{c}       1 \\       1 \\       2 \\       -1 \\       -1 \\       1     \end{array} $ | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 0 \\ 1 \end{array} $                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                             | 1<br>2<br>3<br>3<br>1   | 1<br>2<br>3<br>3<br>-1         | $1 \\ 1 \\ 2 \\ -1 \\ -1 \\ -1 \\ -1$                                                                                                                                                                                                        | 1<br>-1<br>(<br>(                                                                                 |
| EMATICAL,<br>CAL<br>LINEERING<br>CES |                                                                                                                                                                                                                                                                                              |                                                                                                           |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                             |                         | -1<br>-2<br>-3<br>0            | -1<br>-2<br>1<br>1<br>0                                                                                                                                                                                                                      |                                                                                                   |
|                                      | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                             | $0 \\ 0 \\ -2 \\ -2 \\ -2 \\ -2$                                                                          | $     \begin{array}{r}       -1 \\       -1 \\       -2 \\       1 \\       1     \end{array} $                                                                                                                                                                                           | $     \begin{array}{c}       1 \\       1 \\       -2 \\       1 \\       1     \end{array} $                                                                                                                                                               | 0<br>0<br>0<br>0<br>0   | 0<br>0<br>0<br>0               | 0<br>0<br>0<br>0                                                                                                                                                                                                                             | $-i\sqrt{\varepsilon}$ $i\sqrt{\varepsilon}$ $($ $-i\sqrt{\varepsilon}$ $i\sqrt{\varepsilon}$     |
| ROYAL<br>SIETY                       | $0$ $-\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $-\sqrt{2}$ $0$                                                                                                                                                                                                                                        | 2<br>0<br>0<br>0<br>0<br>0<br>0                                                                           | $ \begin{array}{c} 0 \\ -1 \\ -1 \\ -1 \\ -1 \\ 1 \end{array} $                                                                                                                                                                                                                           | $ \begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ -1 \end{array} $                                                                                                                                                                                                     | 0 $2$ $-2$ $2$ $-2$ $4$ | 0 - 2<br>2 - 2<br>2 - 2<br>- 4 | 0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                   | (<br>-1<br>-1<br>-1<br>-1                                                                         |
| CAL THE                              | 0<br>BD<br>ACD                                                                                                                                                                                                                                                                               | 0                                                                                                         | 1                                                                                                                                                                                                                                                                                         | -1                                                                                                                                                                                                                                                          | <u>-4</u><br>I          | 4                              | 0<br>AI<br>BI<br>ABI                                                                                                                                                                                                                         | 1<br>————————————————————————————————————                                                         |

ABC<sup>2</sup>D

A MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

PHILOSOPHICAL THE TRANSACTIONS SOC

| YAL<br>YAL          | 3e <sub>6</sub>                                                                                                                                          | $8\epsilon_{6}$                                                                                                   | 8e6                                                                                                                                                               | 8€ <sub>6</sub>                                                                                                                                                                                                                                          | $24\epsilon_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $12\epsilon_{8}$                                                                                                                                                                                                                                                                                     | $12\epsilon_8$                                                                                                                                                                                                                                                                                                |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TRANSACTIONS SOCIET | PRT<br>2RT<br>'QRT<br>'2RT<br>? <sup>2</sup> RT<br>? <sup>2</sup> S <sup>2</sup> T<br>R <sup>2</sup> S <sup>2</sup> T<br>? <sup>2</sup> S <sup>2</sup> T | $P^{3}QR^{2}T$<br>$P^{3}R^{2}T$<br>$P^{2}QR^{2}T$<br>$RS^{2}T$<br>$RS^{2}T$<br>$P^{3}QRS^{2}T$<br>$P^{3}QRS^{2}T$ | R <sup>2</sup> T<br>PR <sup>2</sup> T<br>QR <sup>2</sup> T<br>PQR <sup>2</sup> T<br>PRS <sup>2</sup> T<br>PQRS <sup>2</sup> T<br>P <sup>2</sup> RS <sup>2</sup> T | RT<br>P <sup>2</sup> QRT<br>P <sup>3</sup> QRT<br>P <sup>3</sup> QR <sup>2</sup> S <sup>2</sup> T<br>P <sup>3</sup> R <sup>2</sup> S <sup>2</sup> T<br>P <sup>2</sup> QR <sup>2</sup> S <sup>2</sup> T<br>P <sup>2</sup> R <sup>2</sup> S <sup>2</sup> T | ST, P <sup>2</sup> ST<br>PQST, P <sup>3</sup> QST<br>R <sup>2</sup> ST, P <sup>2</sup> R <sup>2</sup> ST<br>PR <sup>2</sup> ST, P <sup>3</sup> R <sup>3</sup> ST<br>QRST, P <sup>2</sup> QRST<br>P <sup>2</sup> RST, RST<br>S <sup>3</sup> T, P <sup>2</sup> S <sup>3</sup> T<br>PQS <sup>3</sup> T, P <sup>3</sup> QS <sup>3</sup> T<br>R <sup>2</sup> S <sup>3</sup> T, P <sup>2</sup> RS <sup>3</sup> T<br>QRS <sup>3</sup> T, P <sup>2</sup> QRS <sup>3</sup> T<br>P <sup>2</sup> RS <sup>3</sup> T, RS <sup>3</sup> T | PST, P <sup>2</sup> QST<br>PQRST, P <sup>3</sup> RST<br>QR <sup>2</sup> ST, P <sup>3</sup> QR <sup>2</sup> ST<br>QS <sup>3</sup> T, P <sup>3</sup> S <sup>3</sup> T<br>PRS <sup>3</sup> T, P <sup>3</sup> QRS <sup>3</sup> T<br>PQR <sup>2</sup> S <sup>3</sup> T, P <sup>2</sup> QRS <sup>3</sup> T | QST, P <sup>3</sup> ST<br>PRST, P <sup>3</sup> QRST<br>PQR <sup>2</sup> ST, P <sup>2</sup> QR <sup>2</sup> S<br>PS <sup>3</sup> T, P <sup>2</sup> QS <sup>3</sup> T<br>PQRS <sup>3</sup> T, P <sup>3</sup> RS <sup>3</sup><br>QR <sup>2</sup> S <sup>3</sup> T, P <sup>3</sup> QR <sup>2</sup> S <sup>3</sup> |
| TR                  | 1                                                                                                                                                        | 1                                                                                                                 | 1                                                                                                                                                                 | 1                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                             |
|                     | 1                                                                                                                                                        | 1                                                                                                                 | 1                                                                                                                                                                 | 1                                                                                                                                                                                                                                                        | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1                                                                                                                                                                                                                                                                                                   | -1                                                                                                                                                                                                                                                                                                            |
|                     | -1                                                                                                                                                       | -1                                                                                                                | -1                                                                                                                                                                | -1                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                             |
|                     | 0                                                                                                                                                        | 0                                                                                                                 | 0                                                                                                                                                                 | 0                                                                                                                                                                                                                                                        | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                             |
|                     | 0                                                                                                                                                        | 0                                                                                                                 | 0                                                                                                                                                                 | 0                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1                                                                                                                                                                                                                                                                                                   | -1                                                                                                                                                                                                                                                                                                            |
|                     | -1                                                                                                                                                       | -1                                                                                                                | -1                                                                                                                                                                | -1                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1                                                                                                                                                                                                                                                                                                   | -1                                                                                                                                                                                                                                                                                                            |
|                     | -1                                                                                                                                                       | -1                                                                                                                | -1                                                                                                                                                                | -1                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                             |
| U L                 | 1                                                                                                                                                        | 1                                                                                                                 | 1                                                                                                                                                                 | 1                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                             |
| TICAL,<br>ERING     | 0                                                                                                                                                        | 0                                                                                                                 | 0                                                                                                                                                                 | 0                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1                                                                                                                                                                                                                                                                                                   | -1                                                                                                                                                                                                                                                                                                            |
| SELAT               | 0                                                                                                                                                        | 0                                                                                                                 | 0                                                                                                                                                                 | 0                                                                                                                                                                                                                                                        | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                             |
|                     | 0                                                                                                                                                        | 0                                                                                                                 | 0                                                                                                                                                                 | 0                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                             |
| EN AT               | $\sqrt{3}$                                                                                                                                               | $i\sqrt{3}$                                                                                                       | $-i\sqrt{3}$                                                                                                                                                      | $i\sqrt{3}$                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                             |
| AH<br>HA<br>Los     | $\sqrt{3}$                                                                                                                                               | $-i\sqrt{3}$                                                                                                      | $i\sqrt{3}$                                                                                                                                                       | $-i\sqrt{3}$                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                             |
|                     | 0                                                                                                                                                        | 0                                                                                                                 | 0                                                                                                                                                                 | 0                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                             |
|                     | $\sqrt{3}$                                                                                                                                               | i√3                                                                                                               | $i\sqrt{3}$                                                                                                                                                       | $-i\sqrt{3}$                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                             |
|                     | $\sqrt{3}$                                                                                                                                               | $-i\sqrt{3}$                                                                                                      | $-i\sqrt{3}$                                                                                                                                                      | $i\sqrt{3}$                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                             |
|                     | 0                                                                                                                                                        | 0                                                                                                                 | 0                                                                                                                                                                 | 0                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                             |
| A.                  | 1                                                                                                                                                        | 1                                                                                                                 | -1                                                                                                                                                                | -1                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\sqrt{2}$                                                                                                                                                                                                                                                                                           | $-\sqrt{2}$                                                                                                                                                                                                                                                                                                   |
| $\succ$             | (-1                                                                                                                                                      | -1                                                                                                                | 1                                                                                                                                                                 | 1                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\sqrt{2}$                                                                                                                                                                                                                                                                                           | $-\sqrt{2}$                                                                                                                                                                                                                                                                                                   |
| OF                  |                                                                                                                                                          | 1                                                                                                                 | -1                                                                                                                                                                | -1                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $-\sqrt{2}$                                                                                                                                                                                                                                                                                          | $\sqrt{2}$                                                                                                                                                                                                                                                                                                    |
| A F                 | (-1)                                                                                                                                                     | -1 - 1                                                                                                            | 1<br>1                                                                                                                                                            | 1<br>1                                                                                                                                                                                                                                                   | 0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $-\sqrt{2}{0}$                                                                                                                                                                                                                                                                                       | $\sqrt{2}$                                                                                                                                                                                                                                                                                                    |
| шС                  | 1                                                                                                                                                        | -1<br>1                                                                                                           | -1                                                                                                                                                                | -1                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                             |
| ΗČ                  | ACI<br>BCI<br>1BCI                                                                                                                                       | 1                                                                                                                 | -1<br>C <sup>2</sup> I<br>AC <sup>2</sup> I<br>BC <sup>2</sup> I<br>ABC <sup>2</sup> I                                                                            | -1<br>CI                                                                                                                                                                                                                                                 | 0<br>DI<br>ABDI<br>C <sup>2</sup> DI<br>AC <sup>2</sup> DI<br>BCDI<br>CDI                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>ADI<br>ABCDI<br>BC <sup>2</sup> DI                                                                                                                                                                                                                                                              | 0<br>BDI<br>ACDI<br>ABC <sup>2</sup> DI                                                                                                                                                                                                                                                                       |

ATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

| $12\epsilon_8$                                                                                                                                                                                                             | 192 elements                                                                                                                                                                   |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                                                                                            |                                                                                                                                                                                |  |  |  |  |
| T, P <sup>3</sup> ST<br>', P <sup>3</sup> QRST<br>T, P <sup>2</sup> QR <sup>2</sup> ST<br>', P <sup>2</sup> QS <sup>3</sup> T<br>', P <sup>3</sup> RS <sup>3</sup> T<br>', P <sup>3</sup> QR <sup>2</sup> S <sup>3</sup> T | $\begin{array}{l} P^{4}=Q^{4}=R^{3}=S^{4}=T^{2}=E\\ P^{2}=Q^{2}\\ QP=P^{3}Q;RP=QR;RQ=PQR;\\ SP=P^{2}QS;SQ=P^{3}S;SR=R^{2}S;\\ TP=PT;TQ=QT;TR=RT;\\ TS=P^{2}S^{3}T \end{array}$ |  |  |  |  |
| 1<br>-1<br>0<br>1<br>-1<br>-1<br>-1<br>1<br>0<br>-1<br>1                                                                                                                                                                   | $\left\{ \alpha = +1; \beta = +1 \right\}$                                                                                                                                     |  |  |  |  |
| 0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                 | $\begin{cases} \gamma \\ \alpha = -1; \beta = +1 \\ \alpha = +1; \beta = -1 \end{cases}$                                                                                       |  |  |  |  |
| $ \begin{array}{c} 0 \\ \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \\ 0 \\ 0 \end{array} $                                                                                                       | $\left. \right\rangle \qquad \alpha = -1; \ \beta = -1$                                                                                                                        |  |  |  |  |
| BDI<br>4CDI<br>BC²DI                                                                                                                                                                                                       | $A^{2} = B^{2} = C^{3} = D^{2} = I^{2} = E$<br>BA = AB; CA = BC; CB = ABC<br>$DA = BD; DB = AD; DC = C^{2}D;$<br>IA = AI; IB = BI; IC = CI;<br>ID = DI.                        |  |  |  |  |

PHILOSOPHICAL THE ROYAL MATHEMATICAL, TRANSACTIONS SOCIETY & PASTICAL, POPULATIONS SOCIETY SCIENCES

PHILOSOPHICAL THE ROYAL MATHEMATICAL, TRANSACTIONS SOCIETY & PATHEMATICAL, PRANSACTIONS SOCIETY SCIENCES

| 12e <sub>8</sub><br>PS<br>P <sup>2</sup> QS<br>PQRS<br>P <sup>3</sup> RS<br>QR <sup>2</sup> S                                                                                                                                         | 12¢<br>QS<br>P <sup>3</sup> (<br>PR.                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                       | P³Q1<br>PQR                                                                                                                                                                                                                                                                   |
| P <sup>3</sup> QR <sup>2</sup> S<br>PST <sup>2</sup><br>P <sup>2</sup> QST <sup>2</sup><br>PQRST <sup>2</sup><br>P <sup>3</sup> RST <sup>2</sup><br>QR <sup>2</sup> ST <sup>2</sup><br>P <sup>3</sup> QR <sup>2</sup> ST <sup>2</sup> | P <sup>2</sup> QI<br>QST<br>P <sup>3</sup> S'<br>PRS'<br>P <sup>3</sup> QR<br>PQR <sup>2</sup><br>P <sup>2</sup> QR                                                                                                                                                           |
| $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ i \sqrt{2} \\ -i \sqrt{2} \\ i \sqrt{2} \\ -i \sqrt{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $                                            | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                      |
| 0<br>0<br>0<br>AD<br>ABCD<br>BC <sup>2</sup> D                                                                                                                                                                                        | $\begin{array}{c} 0\\ 0\\ 0\\ \hline BL\\ ACl\\ ABC^{i} \end{array}$                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                       | $\begin{array}{c} P^{3}QR^{2}S\\ PST^{2}\\ PST^{2}\\ PST^{2}\\ PQST^{2}\\ PQRST^{2}\\ P^{3}RST^{2}\\ QR^{2}ST^{2}\\ P^{3}QR^{2}ST^{2}\\ \hline 1\\ -1\\ 0\\ 1\\ -1\\ 1\\ -1\\ 0\\ 1\\ -1\\ 0\\ 1\\ -1\\ 0\\ 0\\ 1\\ -1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$ |

| THEMATICAL,<br>YSICAL<br>ENGINEERING                   |                                                                                                                                                                                                                                                              |                                                                    |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                     |                                                                                                                                                       |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| ROYAL A MA                                             | $2\epsilon_8$<br>2S                                                                                                                                                                                                                                          | 6 <i>6</i> 4                                                       | $8e_6$                                                                                                                                                                                                                                                                                    | $8\epsilon_6$                                                                                                                                                                                                                                               | TABLE $2\epsilon_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 (cont.)<br>2e4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $12\epsilon_4$                                                                                                                                                                                                                      | 8                                                                                                                                                     |
| HEOC                                                   | ) <sup>38</sup> S<br>RS<br>QRS<br>QRS<br>QRS<br>ST <sup>2</sup><br>ST <sup>2</sup><br>ST <sup>2</sup><br>ST <sup>2</sup><br>RST <sup>2</sup><br><sup>2</sup><br><sup>2</sup><br><sup>2</sup><br><sup>2</sup><br><sup>2</sup><br><sup>2</sup><br><sup>2</sup> | $PT^2, P^3T^2$<br>$QT^2, P^2QT^2$<br>$PQT^2, P^3QT^2$              | PRT <sup>2</sup> , P <sup>3</sup> QR <sup>2</sup> T <sup>2</sup><br>QRT <sup>2</sup> , P <sup>3</sup> R <sup>2</sup> T <sup>2</sup><br>PQRT <sup>2</sup> , P <sup>2</sup> QR <sup>2</sup> T <sup>2</sup><br>P <sup>2</sup> RT <sup>2</sup> , P <sup>2</sup> R <sup>2</sup> T <sup>2</sup> | R <sup>2</sup> T <sup>2</sup> , RT <sup>2</sup><br>PR <sup>2</sup> T <sup>2</sup> , P <sup>2</sup> QRT <sup>2</sup><br>QR <sup>2</sup> T <sup>2</sup> , P <sup>3</sup> QRT <sup>2</sup><br>PQR <sup>2</sup> T <sup>2</sup> , P <sup>3</sup> RT <sup>2</sup> | $T, T^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $P^{2}T, P^{2}T^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PT, P <sup>3</sup> T <sup>3</sup><br>QT, P <sup>2</sup> QT <sup>3</sup><br>PQT, P <sup>3</sup> QT <sup>3</sup><br>PT <sup>3</sup> , P <sup>3</sup> T<br>QT <sup>3</sup> , P <sup>2</sup> QT<br>PQT <sup>3</sup> , P <sup>3</sup> QT | PRT, P <sup>3</sup><br>QRT, F<br>PQRT, P<br>P <sup>2</sup> RT, F                                                                                      |
| TR                                                     | 1<br>1<br>0<br>1<br>1<br>1                                                                                                                                                                                                                                   | $ \begin{array}{r} 1 \\ 2 \\ -1 \\ -1 \\ 1 \\ 1 \end{array} $      | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array} $                                                                                                                                                                                                                              | $ \begin{array}{c} 1 \\ 1 \\ -1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array} $                                                                                                                                                                                           | 1<br>1<br>2<br>3<br>3<br>-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>1<br>2<br>3<br>3<br>-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{r} 1 \\ 1 \\ 2 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{array} $                                                                                                                                                    | $ \begin{array}{c} 1 \\ 1 \\ -1 \\ 0 \\ 0 \\ -1 \\ 1 \end{array} $                                                                                    |
| MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES |                                                                                                                                                                                                                                                              | $ \begin{array}{c} 1 \\ 2 \\ -1 \\ -1 \\ 0 \\ 0 \\ 0 \end{array} $ | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 0 \\ -1 \\ -1 \\ 1 \\ 1 \end{array} $                                                                                                                                                                                                                  | $ \begin{array}{r} 1 \\ -1 \\ 0 \\ 0 \\ 1 \\ -1 \\ 1 \end{array} $                                                                                                                                                                                          | $     \begin{array}{r}       -1 \\       -2 \\       -3 \\       -4 \\       2 \\       2     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $     \begin{array}{r}       -1 \\       -2 \\       -3 \\       -3 \\       -4 \\       4 \\       -2 \\       2     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $     \begin{array}{r}       -2 \\       1 \\       1 \\       0 \\       0 \\       0 \\       0       \end{array} $                                                                                                               | $     \begin{array}{r}       -1 \\       1 \\       0 \\       0 \\       -1 \\       1 \\       1 \\       1       1       1       1       1       $ |
| OYAL A                                                 | - '2<br>'2<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                          | $ \begin{array}{c} 0 \\ 0 \\ 2 \\ 2 \\ 2 \\ -2 \\ 0 \end{array} $  | $ \begin{array}{c} 1 \\ 1 \\ -2 \\ 1 \\ 0 \\ 2 \end{array} $                                                                                                                                                                                                                              | -1<br>-1<br>-2<br>1<br>0                                                                                                                                                                                                                                    | $     \begin{array}{r}       2 \\       -2 \\       -2 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\   $ | $     \begin{array}{r}       -2 \\       2 \\       2 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\    $ | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ -\sqrt{3} \\ \sqrt{3} \\ 0 \\ 0 \end{array} $                                                                      |
| INS SOCIETY                                            | 0<br>0<br>3D<br>CD                                                                                                                                                                                                                                           | 0                                                                  | $\begin{array}{c} -2\\1\\1\end{array}$                                                                                                                                                                                                                                                    | 2<br>-1<br>-1                                                                                                                                                                                                                                               | 0<br>0<br>0<br><i>I</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br><i>AI</i><br><i>BI</i><br><i>ABI</i>                                                                                                                                                                                      | $ \begin{array}{c}                                     $                                                                                              |
| PHILOSOPHICAL<br>TRANSACTIONS                          | C <sup>2</sup> D                                                                                                                                                                                                                                             |                                                                    |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                     |                                                                                                                                                       |

L. L. BOYLE AND KERIE F. C

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $8\epsilon_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $8\epsilon_{12}$                                                                                                                                                                                    | $8e_{12}$                                                                                                                                                                                               | $24\epsilon_2$                                                                                                                                                                                                                                                                                                                                                                                                          | $12\epsilon_8$                                                                                                                                                                                      | $12\epsilon_8$                                                                                                                                                                                                                              | 1 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| SOCIET<br>SOCIET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                                                                                                                                                  |                                                                                                                                                                                                         | ST; ST <sup>3</sup><br>PQST; PQST <sup>3</sup><br>R <sup>2</sup> ST; R <sup>2</sup> ST <sup>3</sup><br>PR <sup>2</sup> ST; PR <sup>2</sup> ST <sup>3</sup><br>QRST; QRST <sup>3</sup>                                                                                                                                                                                                                                   | PST<br>P <sup>2</sup> QST<br>PQRST<br>P <sup>3</sup> RST<br>QR <sup>2</sup> ST                                                                                                                      | QST<br>P <sup>3</sup> ST<br>PRST<br>P <sup>3</sup> QRST<br>PQR <sup>2</sup> ST                                                                                                                                                              |   |
| $\begin{array}{c} \begin{array}{c} P^{3}QR^{2}T^{3} \\ P^{3}R^{2}T^{3} \\ P^{2}QR^{2}T^{3} \\ P^{2}R^{2}T^{3} \\ P^{2}R^{2}T^{3} \\ P^{2}R^{2}T^{3} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PRT <sup>3</sup> , P <sup>3</sup> QR <sup>2</sup> T<br>QRT <sup>3</sup> , P <sup>3</sup> R <sup>2</sup> T<br>PQRT <sup>3</sup> , P <sup>2</sup> QR <sup>2</sup> T<br>P <sup>2</sup> RT <sup>3</sup> , P <sup>2</sup> R <sup>2</sup> T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R <sup>2</sup> T, RT <sup>3</sup><br>PR <sup>2</sup> T, P <sup>2</sup> QRT <sup>3</sup><br>QR <sup>2</sup> T, P <sup>3</sup> QRT <sup>3</sup><br>PQR <sup>2</sup> T, P <sup>3</sup> RT <sup>3</sup> | R <sup>2</sup> T <sup>3</sup> , RT<br>PR <sup>2</sup> T <sup>3</sup> , P <sup>2</sup> QRT<br>QR <sup>2</sup> T <sup>3</sup> , P <sup>3</sup> QRT<br>PQR <sup>2</sup> T <sup>3</sup> , P <sup>3</sup> RT | P <sup>2</sup> RST; P <sup>2</sup> RST <sup>3</sup><br>P <sup>2</sup> ST; P <sup>2</sup> ST <sup>3</sup><br>P <sup>3</sup> QST; P <sup>3</sup> QST <sup>3</sup><br>P <sup>2</sup> R <sup>2</sup> ST; P <sup>2</sup> R <sup>2</sup> ST <sup>3</sup><br>P <sup>3</sup> R <sup>2</sup> ST; P <sup>3</sup> R <sup>2</sup> ST <sup>3</sup><br>P <sup>2</sup> QRST; P <sup>2</sup> QRST <sup>3</sup><br>RST; RST <sup>3</sup> | P <sup>3</sup> QR <sup>2</sup> ST<br>PST <sup>3</sup><br>P <sup>2</sup> QST <sup>3</sup><br>PQRST <sup>3</sup><br>P <sup>3</sup> RST <sup>3</sup><br>P <sup>3</sup> QR <sup>2</sup> ST <sup>3</sup> | P <sup>2</sup> QRST<br>QST <sup>3</sup><br>P <sup>3</sup> ST <sup>3</sup><br>PRST <sup>3</sup><br>P <sup>3</sup> QRST <sup>3</sup><br>PQR <sup>2</sup> ST <sup>3</sup><br>P <sup>2</sup> QRST <sup>3</sup>                                  |   |
| PHILOSOPHICAL<br>T<br>TANSACTIONSTHE ROYAL<br>MATHEMATICAL,<br>PHYSICAL<br>SOCIETYMATHEMATICAL,<br>PHYSICAL<br>SCIENCER<br>SCIENCES<br>SCIENCESPHYSICAL<br>PHYSICAL<br>SCIENCER<br>SCIENCESOF<br>SOCIETY0<br>0<br>0<br>11<br>1<br>1<br>1<br>11<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br> | $ \begin{array}{c} 1 \\ 1 \\ -1 \\ 0 \\ 0 \\ -1 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \\ -1 \\ 1 \\ 1 \\ -1 \\ -1 \\ -1 \\ 0 \\ \sqrt{3} \\ -\sqrt{3} \\ 0 \\ 0 \\ \sqrt{3} \\ -\sqrt{3} \\ -\sqrt{3} \\ 0 \\ 0 \\ \sqrt{3} \\ -\sqrt{3} \\ -$ | $ \begin{array}{c} 1 \\ 1 \\ -1 \\ 0 \\ 0 \\ -1 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \\ 1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 $                                                                         | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 0 \\ -1 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \\ 1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 $                                                                                  | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ -1 \\ 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                                                                                                                                     | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ -1 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                            | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ -1 \\ 0 \\ -1 \\ 1 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \\ -1 \\ \sqrt{2} \\ i \sqrt{2} \\ i \sqrt{2} \\ i \sqrt{2} \\ -i \sqrt{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ BDI \\ ACDI \\ ABC^2DI \end{array} $ |   |

 $\mathbf{254}$ 

ATHEMATICAL, HYSICAL ENGINEERING

### IE F. GREEN

| 8                                                                                                                            | 192 elements                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T<br>T<br>'T<br>ST<br>ST<br>ST<br>T <sup>3</sup><br>ST <sup>3</sup><br>ST <sup>3</sup><br>ST <sup>3</sup><br>ST <sup>3</sup> | $\begin{array}{l} P^{4} = Q^{4} = R^{3} = S^{2} = T^{4} = {}_{l}E \\ P^{2} = Q^{2} \\ QP = P^{3}Q; RP = QR; RQ = PQR; \\ SP = P^{2}QS; SQ = P^{3}S; SR = R^{2}S; \\ TP = PT; TQ = QT; TR = RT; \\ TS = ST^{3} \end{array}$ |
|                                                                                                                              | $\alpha = +1; \beta = +1$                                                                                                                                                                                                  |
|                                                                                                                              | $\left. \begin{array}{l} \alpha = -1; \beta = +1 \\ \alpha = +1; \beta = -1 \end{array} \right.$                                                                                                                           |
| ) <u>I</u>                                                                                                                   | $\begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                   |
| DI<br>²DI                                                                                                                    | $DA = BD$ ; $DB = AD$ ; $DC = C^2D$ ;<br>IA = AI; $IB = BI$ ; $IC = CI$ ;<br>ID = DI                                                                                                                                       |

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

| ΥΓ                            |                                                                                                               |                                     |                |                |                |                |                                         |                           |                                           |                                                     |
|-------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------|----------------|----------------|----------------|-----------------------------------------|---------------------------|-------------------------------------------|-----------------------------------------------------|
| XX                            |                                                                                                               | $1\epsilon_1$                       | $1\epsilon_2$  | $1\epsilon_2$  | $1\epsilon_2$  | $6\epsilon_4$  | $8\epsilon_3$                           | $8\epsilon_3$             | $24\epsilon_4$                            | $12\epsilon_8$                                      |
| OL                            |                                                                                                               | -                                   | -              | -              | -              | -              | -                                       |                           | <i>S</i> , <i>S</i> <sup>3</sup>          | PS                                                  |
| R                             |                                                                                                               |                                     |                |                |                |                |                                         |                           | $PQS, PQS^3$                              | $P^2QS$                                             |
| ШU                            |                                                                                                               |                                     |                |                |                |                |                                         |                           | $R^2S, R^2S^3$                            | PQRS                                                |
| ΗO                            |                                                                                                               |                                     |                |                |                |                |                                         |                           | $PR^2S, PR^2S^3$                          | $P^{3}RS$                                           |
| <b>N</b>                      |                                                                                                               |                                     |                |                |                |                |                                         |                           | $QRS, QRS^3$                              | $QR^2S$                                             |
| N-                            |                                                                                                               |                                     |                |                |                |                |                                         |                           | $P^2RS, P^2RS^3$                          | $P^{3}QR^{2}S$                                      |
| SZ                            |                                                                                                               |                                     |                |                |                |                |                                         |                           | $P^2S, P^2S^3$                            | $PS^3$                                              |
| HO I                          |                                                                                                               |                                     |                |                |                |                | ימ∩נית ממ                               | ת פת                      | $P^3QS, P^3QS^3$                          | $P^2QS^3$                                           |
|                               |                                                                                                               |                                     |                |                |                | $P, P^3$       | $PR, P^3QR^2$<br>$QR, P^3R^2$           | $R^2, R$<br>$PR^2, P^2QR$ | $P^2R^2S, P^2R^2S^3 \ P^3R^2S, P^3R^2S^3$ | PQRS <sup>3</sup><br>P <sup>3</sup> RS <sup>3</sup> |
| 0 AC                          |                                                                                                               |                                     |                |                |                | $P, P^{2}Q$    | $QR, P^{2}QR^{2}$<br>$PQR, P^{2}QR^{2}$ | $QR^2, P^3QR$             | $P^{2}QRS, P^{2}QRS^{3}$                  | $QR^2S^3$                                           |
| <u>Sž</u>                     | $_{3}(O_{h})$                                                                                                 | E                                   | $P^2$          | $S^2$          | $P^2S^2$       | $PQ, P^{3}Q$   | $P^2R, P^2R^2$                          | $PQR^2, P^3R$             | RS, RS <sup>3</sup>                       | $P^{3}QR^{2}S^{3}$                                  |
| PHILOSOPHICAL<br>TRANSACTIONS |                                                                                                               |                                     | -              | ~              |                | - 4,- 4        |                                         |                           | 100,100                                   |                                                     |
| <b>4</b> F                    | $A_{1g}$                                                                                                      | 1                                   | 1              | 1              | 1              | 1              | 1                                       | 1                         | 1                                         | 1                                                   |
|                               | $egin{array}{c} A_{2g} \ E_g \end{array}$                                                                     | $\frac{1}{2}$                       | $rac{1}{2}$   | $\frac{1}{2}$  | $\frac{1}{2}$  | $\frac{1}{2}$  | 1                                       | 1                         | $-1 \\ 0$                                 | $-\frac{1}{0}$                                      |
|                               | $T_{1g}^{L_g}$                                                                                                | $\frac{2}{3}$                       | $\frac{2}{3}$  | $\frac{2}{3}$  | $\frac{2}{3}$  | -1             | $-1 \\ 0$                               | $-1 \\ 0$                 | -1                                        | 1                                                   |
|                               | $T_{2g}^{1g}$                                                                                                 | 3                                   | 3              | 3              | 3              | -1             | õ                                       | Ő                         | 1                                         | $-\overline{1}$                                     |
|                               | $A_{1u}^{2g}$                                                                                                 | 1                                   | 1              | 1              | 1              | 1              | 1                                       | 1                         | 1                                         | 1                                                   |
|                               | $A_{2u}$                                                                                                      | 1                                   | 1              | 1              | 1              | 1              | 1                                       | 1                         | - 1                                       | -1                                                  |
| ט נ                           | $E_u$                                                                                                         | 2                                   | <b>2</b>       | <b>2</b>       | <b>2</b>       | 2              | -1                                      | -1                        | 0                                         | 0                                                   |
| AATICAL,<br>L<br>VEERING<br>S | $T_{1u}$                                                                                                      | 3                                   | 3              | 3              | 3              | -1             | 0                                       | 0                         | -1                                        | 1                                                   |
| MAT<br>AL<br>NEE<br>ES        | $T_{2u}$                                                                                                      | 3                                   | $\frac{3}{-4}$ | 3              | 3              | $-1 \\ 0$      | 0                                       | 0                         | $1 \\ 0$                                  | $-\frac{1}{0}$                                      |
| HODA                          | $G'_{lpha g} \ G'_{lpha u}$                                                                                   | 4<br>4                              | -4 - 4         | 4<br>4         | -4 - 4         | 0              | - I<br>- 1                              | 1                         | 0                                         | 0                                                   |
| MAT<br>PHYS<br>& EN<br>SCIE   | $(G''^+_{\pi^+})$                                                                                             | 2                                   | $-2^{1}$       | $\frac{1}{2}$  | $-\frac{1}{2}$ | Ő              | 1                                       | -1                        | Ő                                         | $i\sqrt{2}$                                         |
|                               | $\begin{cases} G_{\alpha g}^{"'+} \\ G_{\alpha g}^{"-} \\ G_{\alpha u}^{"+} \\ G_{\alpha u}^{"+} \end{cases}$ | $\overline{2}$                      | $-2^{-2}$      | $\overline{2}$ | $-2^{-2}$      | 0              | 1                                       | -1                        | 0                                         | $-i\sqrt{2}$                                        |
|                               | $G_{\alpha u}^{\widetilde{n}+}$                                                                               | 2                                   | -2             | <b>2</b>       | -2             | 0              | 1                                       | - 1                       | 0                                         | $i\sqrt{2}$                                         |
|                               | Gay                                                                                                           | 2                                   | -2             | <b>2</b>       | -2             | 0              | 1                                       | - 1                       | 0                                         | $-\mathrm{i}\sqrt{2}$                               |
|                               | $E_{1\beta}$                                                                                                  | 2                                   | $\frac{2}{2}$  | -2             | -2             | 2              | 2                                       | 2                         | 0                                         | 0                                                   |
| A.                            | $E_{2\beta}$                                                                                                  | 2                                   | 2              | $-2 \\ -2$     | -2             | 2              | -1                                      | -1                        | 0                                         | 0                                                   |
| Ч                             | $E_{3\beta}$                                                                                                  | $\begin{array}{c} 2\\ 6\end{array}$ | $\frac{2}{6}$  | -2 - 6         | $-2 \\ -6$     | $2 \\ -2$      | $-1 \\ 0$                               | $-1 \\ 0$                 | 0<br>0                                    | 0                                                   |
|                               | $I_{\beta}$<br>$G_{1\alpha\beta}$                                                                             | 0<br>4                              | -4             | -0 -4          | $-0 \\ 4$      | $-\frac{2}{0}$ | $\frac{0}{2}$                           | -2                        | 0                                         | 0                                                   |
| RE                            | $G_{1\alpha\beta}$<br>$G_{2\alpha\beta}$                                                                      | 4                                   | $-\frac{1}{4}$ | -4             | 4              | Ő              | -1                                      | -2                        | ů<br>0                                    | ů<br>0                                              |
| ШΟ                            | $G_{3\alpha\beta}^{2\alpha\rho}$                                                                              | 4                                   | -4             | -4             | 4              | 0              | -1                                      | 1                         | 0                                         | 0                                                   |
| HO                            | O <sub>h</sub>                                                                                                | E                                   |                |                |                | A              | AC                                      | C <sup>2</sup> , C        | D                                         | AD                                                  |
| <b>L N</b>                    | 0 h                                                                                                           | Ľ                                   |                |                |                | B              | BC                                      | $AC^2$                    | ABD                                       | лD                                                  |
| IS                            |                                                                                                               |                                     |                |                |                | ÂB             | ABC                                     |                           | $C^2D$                                    | ABCD                                                |
| 3C                            |                                                                                                               |                                     |                |                |                |                |                                         | $BC^2 \\ ABC^2$           | $AC^{2}D$                                 |                                                     |
| ŦĔ                            |                                                                                                               |                                     |                |                |                |                |                                         |                           | BCD<br>CD                                 | $BC^{2}D$                                           |
| PHILOSOPHICAL<br>TRANSACTIONS |                                                                                                               |                                     |                |                |                |                |                                         |                           | CD                                        |                                                     |
| SAS                           |                                                                                                               |                                     |                |                |                |                |                                         |                           |                                           |                                                     |
| NIN NIN                       |                                                                                                               |                                     |                |                |                |                |                                         |                           |                                           |                                                     |
| HA                            |                                                                                                               |                                     |                |                |                |                |                                         |                           |                                           |                                                     |
|                               |                                                                                                               |                                     |                |                |                |                |                                         |                           |                                           |                                                     |

| -  |    | $\mathbf{\circ}$ |          |  |
|----|----|------------------|----------|--|
| -  |    | -                |          |  |
| ۰. |    | -                |          |  |
| J  |    | -                |          |  |
| -  |    | <u> </u>         |          |  |
| -  |    | ш                |          |  |
| •  |    | <b>77</b>        |          |  |
| 2  | _  | -                | S        |  |
| 5  | -  | z                | ш.       |  |
| -  | _  | =                | <b>.</b> |  |
| ч  | U  | 123              |          |  |
| -  | -  | $\sim$           | ~        |  |
| -  | S  | z                |          |  |
| -  | >- |                  |          |  |
|    |    |                  |          |  |

| MATHE<br>PHYSIC<br>& ENGI<br>& ENGI<br>SCIENC |                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                             |               |                    |                                                                                                                                                                                                                                        |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>V</b> T <b>V</b>                           |                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                             | Tabl          | e <b>3</b> (cont.) |                                                                                                                                                                                                                                        |
| THE ROYA<br>SOCIETY                           | 12e <sub>8</sub><br>QS <sup>3</sup><br>P <sup>3</sup> S <sup>3</sup><br>PRS <sup>3</sup><br>P <sup>3</sup> QRS <sup>3</sup><br>PQR <sup>2</sup> S              | $6\epsilon_4$                                         | 8€ <sub>6</sub>                                                                                                                                                                                                                                                                           | $8\epsilon_6$                                                                                                                                                                                                                                               | $2\epsilon_4$ | $2\epsilon_4$      | $12\epsilon_4$                                                                                                                                                                                                                         |
| PHILOSOPHICAL<br>TRANSACTIONS                 | P <sup>2</sup> QR <sup>2</sup> S <sup>3</sup><br>QS<br>P <sup>3</sup> S<br>PRS<br>P <sup>3</sup> QRS<br>PQR <sup>2</sup> S<br>P <sup>2</sup> QR <sup>2</sup> S | $PS^2, P^3S^2$<br>$QS^2, P^2QS^2$<br>$PQS^2, P^3QS^2$ | PRS <sup>2</sup> , P <sup>3</sup> QR <sup>2</sup> S <sup>2</sup><br>QRS <sup>2</sup> , P <sup>3</sup> R <sup>2</sup> S <sup>2</sup><br>PQRS <sup>2</sup> , P <sup>2</sup> QR <sup>2</sup> S <sup>2</sup><br>P <sup>2</sup> RS <sup>2</sup> , P <sup>2</sup> R <sup>2</sup> S <sup>2</sup> | R <sup>2</sup> S <sup>2</sup> , RS <sup>2</sup><br>PR <sup>2</sup> S <sup>2</sup> , P <sup>2</sup> QRS <sup>2</sup><br>QR <sup>2</sup> S <sup>2</sup> , P <sup>3</sup> QRS <sup>2</sup><br>PQR <sup>2</sup> S <sup>2</sup> , P <sup>3</sup> RS <sup>2</sup> | $T, S^2T$     | $P^2T, P^2S^2T$    | PT, P <sup>3</sup> S <sup>2</sup> 7<br>QT, P <sup>2</sup> QS <sup>2</sup><br>PQT, P <sup>3</sup> QS <sup>1</sup><br>PS <sup>2</sup> T, P <sup>3</sup> 7<br>QS <sup>2</sup> T, P <sup>2</sup> Q<br>PQS <sup>2</sup> T, P <sup>3</sup> 4 |
| TR                                            | 1<br>- 1                                                                                                                                                       | 1<br>1                                                | 1<br>1                                                                                                                                                                                                                                                                                    | 1<br>1                                                                                                                                                                                                                                                      | 1<br>1        | 1<br>1             | 1                                                                                                                                                                                                                                      |
|                                               | 0                                                                                                                                                              | 2                                                     | -1                                                                                                                                                                                                                                                                                        | - 1                                                                                                                                                                                                                                                         | <b>2</b>      | 2                  | <b>2</b>                                                                                                                                                                                                                               |
|                                               | 1                                                                                                                                                              | -1                                                    | 0                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                           | 3             | 3                  | -1                                                                                                                                                                                                                                     |
|                                               | -1                                                                                                                                                             | -1                                                    | 0                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                           | 3             | 3                  | -1                                                                                                                                                                                                                                     |
|                                               | 1                                                                                                                                                              | 1                                                     | 1                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                           | -1            | -1                 | -1                                                                                                                                                                                                                                     |
|                                               | $-\frac{1}{0}$                                                                                                                                                 | $\frac{1}{2}$                                         | 1                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                           | $-1 \\ -2$    | $-1 \\ -2$         | $-1 \\ -2$                                                                                                                                                                                                                             |
| AL,<br>NG                                     | 0                                                                                                                                                              | $-\frac{2}{-1}$                                       | $-1 \\ 0$                                                                                                                                                                                                                                                                                 | $-\frac{1}{0}$                                                                                                                                                                                                                                              | -2 - 3        | -2 - 3             |                                                                                                                                                                                                                                        |
| L<br>L<br>EERING<br>S                         | _ 1                                                                                                                                                            | -1                                                    | 0                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                           | -3            | -3                 | 1<br>1                                                                                                                                                                                                                                 |
| MA<br>AL<br>ES                                | 0                                                                                                                                                              |                                                       | -1                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                           | -5<br>4       | -4                 | 0                                                                                                                                                                                                                                      |
|                                               | Ő                                                                                                                                                              | Ő                                                     | -1                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                           | -4            | 4                  | ő                                                                                                                                                                                                                                      |
| PHY<br>PHY<br>SCIE                            | $-i\sqrt{2}$                                                                                                                                                   | 0                                                     | 1                                                                                                                                                                                                                                                                                         | -1                                                                                                                                                                                                                                                          | 2             | -2                 | 0                                                                                                                                                                                                                                      |
|                                               | $i\sqrt{2}$                                                                                                                                                    | 0                                                     | 1                                                                                                                                                                                                                                                                                         | -1                                                                                                                                                                                                                                                          | <b>2</b>      | -2                 | 0                                                                                                                                                                                                                                      |
|                                               | $-i\sqrt{2}$                                                                                                                                                   | 0                                                     | 1                                                                                                                                                                                                                                                                                         | -1                                                                                                                                                                                                                                                          | -2            | <b>2</b>           | 0                                                                                                                                                                                                                                      |
| <b>C</b>                                      | $i\sqrt{2}$                                                                                                                                                    | 0                                                     | 1                                                                                                                                                                                                                                                                                         | -1                                                                                                                                                                                                                                                          | -2            | 2                  | 0                                                                                                                                                                                                                                      |
|                                               | 0                                                                                                                                                              | $-2 \\ -2$                                            | $-\frac{2}{1}$                                                                                                                                                                                                                                                                            | -2                                                                                                                                                                                                                                                          | 0             | 0                  | 0                                                                                                                                                                                                                                      |
|                                               | 0<br>0                                                                                                                                                         | -2 - 2                                                | 1                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                           | 0             | 0                  | 0                                                                                                                                                                                                                                      |
| $\geq$                                        | 0                                                                                                                                                              | $-\frac{2}{2}$                                        | 1<br>0                                                                                                                                                                                                                                                                                    | 1<br>0                                                                                                                                                                                                                                                      | 0<br>0        | 0<br>0             | 0<br>0                                                                                                                                                                                                                                 |
| ROY                                           | 0                                                                                                                                                              | 0                                                     | $-2^{0}$                                                                                                                                                                                                                                                                                  | $\frac{0}{2}$                                                                                                                                                                                                                                               | 0             | 0                  | 0                                                                                                                                                                                                                                      |
| $\mathbf{R}$                                  | Ő                                                                                                                                                              | Ő                                                     | 1                                                                                                                                                                                                                                                                                         | -1                                                                                                                                                                                                                                                          | Ő             | Ő                  | Ő                                                                                                                                                                                                                                      |
| HEOC                                          | 0                                                                                                                                                              | 0                                                     | 1                                                                                                                                                                                                                                                                                         | -1                                                                                                                                                                                                                                                          | 0             | 0                  | 0                                                                                                                                                                                                                                      |
| SC                                            | BD                                                                                                                                                             |                                                       |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                             | Ι             |                    | AI                                                                                                                                                                                                                                     |
| L = -                                         |                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                             |               |                    | BI                                                                                                                                                                                                                                     |
| CAL                                           | ACD                                                                                                                                                            |                                                       |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                             |               |                    | ABI                                                                                                                                                                                                                                    |

 $ABC^{2}D$ 

PHILOSOPHICAL TF TRANSACTIONS SO

| THE ROYAI<br>SOCIETY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8e <sub>12</sub>                                                                                                                                                                                                                          | $8\epsilon_{12}$                                                                                                                                                                                                                          | 8e <sub>12</sub>                                                                                                                                                                                            | $8\epsilon_{12}$                                                                                                                                                                                            | 24€4<br>ST, S <sup>3</sup> T<br>PQST, PQS <sup>3</sup> 1<br>R <sup>2</sup> ST, R <sup>2</sup> S <sup>3</sup> T<br>PR <sup>2</sup> ST, PR <sup>2</sup> S <sup>3</sup><br>QRST, QRS <sup>3</sup> 1<br>P <sup>2</sup> DGT P <sup>2</sup> DG <sup>2</sup>                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c c} & & 2T \\ & S^2T \\ & & S^$ | PRT, P <sup>3</sup> QR <sup>2</sup> S <sup>2</sup> T<br>QRT, P <sup>3</sup> R <sup>2</sup> S <sup>2</sup> T<br>PQRT, P <sup>2</sup> QR <sup>2</sup> S <sup>2</sup> T<br>P <sup>2</sup> RT, P <sup>2</sup> R <sup>2</sup> S <sup>2</sup> T | PRS <sup>2</sup> T, P <sup>3</sup> QR <sup>2</sup> T<br>QRS <sup>2</sup> T, P <sup>3</sup> R <sup>2</sup> T<br>PQRS <sup>2</sup> T, P <sup>2</sup> QR <sup>2</sup> T<br>P <sup>2</sup> RS <sup>2</sup> T, P <sup>2</sup> R <sup>2</sup> T | R <sup>2</sup> T, RS <sup>2</sup> T<br>PR <sup>2</sup> T, P <sup>2</sup> QRS <sup>2</sup> T<br>QR <sup>2</sup> T, P <sup>3</sup> QRS <sup>2</sup> T<br>PQR <sup>2</sup> T, P <sup>3</sup> RS <sup>2</sup> T | R <sup>2</sup> S <sup>2</sup> T, RT<br>PR <sup>2</sup> S <sup>2</sup> T, P <sup>2</sup> QRT<br>QR <sup>2</sup> S <sup>2</sup> T, P <sup>3</sup> QRT<br>PQR <sup>2</sup> S <sup>2</sup> T, P <sup>3</sup> RT | P <sup>2</sup> RS T, P <sup>2</sup> RS <sup>3</sup><br>P <sup>2</sup> S T, P <sup>2</sup> S <sup>3</sup> T<br>P <sup>3</sup> QS T, P <sup>3</sup> QS <sup>3</sup> T<br>P <sup>2</sup> R <sup>2</sup> S T, P <sup>2</sup> R <sup>2</sup> S <sup>5</sup><br>P <sup>3</sup> R <sup>2</sup> S T, P <sup>3</sup> R <sup>2</sup> S <sup>7</sup><br>P <sup>2</sup> QRS T, P <sup>2</sup> QR <sup>4</sup><br>RS T, RS <sup>3</sup> T |
| PHILOSOPHICAL THE ROYAL MATHEMATICAL, P<br>TRANSACTIONS SOCIETY & ENGINEERING<br>OF OF SCIENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{c} 1 \\ 1 \\ -1 \\ 0 \\ 0 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \\ -1 \\ 1 \\ 1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\$                                                                                                                    | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 0 \\ -1 \\ -1 \\ -1 \\ 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ $                                                                                                                                                    | $ \begin{array}{c} 1 \\ 1 \\ -1 \\ 0 \\ 0 \\ -1 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \\ 1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 $                                                                                 | $ \begin{array}{c} 1 \\ 1 \\ -1 \\ 0 \\ 0 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1$                                                                                                                  | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ -1 \\ 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                                                                                                                                          |

LA MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

| * *                                                                                                                                                                                                                                                                          | . 0                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                          |                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} T, S^{3}T \\ ST, PQS^{3}T \\ ST, R^{2}S^{3}T \\ ST, PR^{2}S^{3}T \\ ST, QRS^{3}T \\ ST, P^{2}RS^{3}T \\ ST, P^{2}S^{3}T \\ ST, P^{2}QS^{3}T \\ ST, P^{2}R^{2}S^{3}T \\ ST, P^{2}RS^{3}T \\ ST, P^{2}QRS^{3}T \\ ST, RS^{3}T \\ ST, RS^{3}T \\ \end{array}$ | PST<br>P <sup>2</sup> QST<br>PQRST<br>P <sup>3</sup> RST<br>QR <sup>2</sup> ST<br>P <sup>3</sup> QR <sup>2</sup> ST<br>P <sup>2</sup> QS <sup>3</sup> T<br>P <sup>2</sup> QS <sup>3</sup> T<br>P <sup>3</sup> RS <sup>3</sup> T<br>QR <sup>2</sup> S <sup>3</sup> T<br>P <sup>3</sup> QR <sup>2</sup> ST<br>1 | $\begin{array}{c} QS^{3}T\\ P^{3}S^{3}T\\ P^{3}QRS^{3}T\\ P^{3}QRS^{3}T\\ PQR^{2}S^{3}T\\ P^{2}QR^{2}S^{3}T\\ P^{2}QR^{2}ST\\ P^{3}ST\\ P^{3}ST\\ P^{3}QRST\\ P^{3}QRST\\ P^{2}QR^{2}S^{3}T\\ \end{array}$ | $P^{4} = Q^{4} = R^{3} = S^{4} = T^{4} = E$ $P^{2} = Q^{2}; S^{2} = T^{2}$ $QP = P^{3}Q; RP = QR; RQ = PQR$ $SP = P^{2}QS; SQ = P^{3}S; SR = R^{2}S$ $TP = PT; TQ = QT; TR = RT$ $TS = S^{3}T$                                                |
| $ \begin{array}{c} -1 \\ 0 \\ -1 \\ 1 \\ -1 \\ 1 \\ 0 \\ 1 \\ -1 \end{array} $                                                                                                                                                                                               | $ \begin{array}{r} -1 \\ 0 \\ 1 \\ -1 \\ -1 \\ 0 \\ -1 \\ 1 \end{array} $                                                                                                                                                                                                                                     | $ \begin{array}{r} -1 \\ 0 \\ 1 \\ -1 \\ -1 \\ 0 \\ -1 \\ 1 \end{array} $                                                                                                                                  | $ \left  \begin{array}{c} \alpha = +1; \ \beta = +1 \end{array} \right  $                                                                                                                                                                     |
| 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                      | $\begin{array}{c} 0\\ 0\\ i\sqrt{2}\\ -i\sqrt{2}\\ -i\sqrt{2}\\ i\sqrt{2}\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$                                                                                                                                                                              | $\begin{array}{c} 0\\ 0\\ -i\sqrt{2}\\ i\sqrt{2}\\ i\sqrt{2}\\ -i\sqrt{2}\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$                                                                           | $\left. \left. \begin{array}{l} \alpha = -1; \ eta = +1 \end{array}  ight.  ight. \left. \left. \begin{array}{l} \alpha = +1; \ eta = -1 \end{array}  ight.  ight. \left. \begin{array}{l} \alpha = -1; \ eta = -1 \end{array}  ight.  ight.$ |
| DI<br>ABDI<br>C <sup>2</sup> DI<br>AC <sup>2</sup> DI<br>BCDI<br>CDI                                                                                                                                                                                                         | ADI<br>ABCDI<br>BC <sup>2</sup> DI                                                                                                                                                                                                                                                                            | BDI<br>ACDI<br>ABC <sup>2</sup> DI                                                                                                                                                                         | $ \begin{array}{c} \hline \\ A^2 = B^2 = C^3 = D^2 = I^2 = E \\ BA = AB; CA = BC; CB = ABC \\ DA = BD; DB = AD; DC = C^2D; \\ IA = AI; IB = BI; IC = CI; \\ ID = DI \end{array} $                                                             |

 $12\epsilon_8$ 

 $12\epsilon_8$ 

192 elements

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

 $24\epsilon_4$ 

| MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES |
|--------------------------------------------------------|
|                                                        |

| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                                                                                             |                                                                                   |                                                                                      |                              |                                  |                                            |                                |                                |                                                                                                                                                                                                                                                                                                                               |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------|----------------------------------|--------------------------------------------|--------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XX                                     |                                                                                             | $1\epsilon_1$                                                                     | $1\epsilon_2$                                                                        | $1\epsilon_2$                | $1\epsilon_2$                    | $6\epsilon_4$                              | $8\epsilon_6$                  | 8e3                            | $24\epsilon_4$                                                                                                                                                                                                                                                                                                                |                  |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HE RO<br>OCIET                         |                                                                                             |                                                                                   |                                                                                      |                              |                                  |                                            |                                |                                | PQS, PQS <sup>3</sup><br>R <sup>2</sup> S, R <sup>2</sup> S <sup>3</sup><br>PR <sup>2</sup> S, PR <sup>2</sup> S <sup>3</sup><br>QRS, QRS <sup>3</sup>                                                                                                                                                                        | i<br>I<br>(<br>P |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ILOSOPHICAL<br>NNSACTIONS<br>OF        | $\mathscr{R}_4(O_{\lambda})$                                                                | E                                                                                 | $P^2$                                                                                | $S^2$                        | $P^2S^2$                         | $Q, P^2Q$                                  | $QR, P^3R^2$<br>$PQR, P^2QR^2$ | $PR^2, P^2QR$<br>$QR^2, P^3QR$ | P <sup>2</sup> S, P <sup>2</sup> S <sup>3</sup><br>P <sup>3</sup> QS, P <sup>3</sup> QS <sup>3</sup><br>P <sup>2</sup> R <sup>2</sup> S, P <sup>2</sup> R <sup>2</sup> S <sup>3</sup><br>P <sup>3</sup> R <sup>2</sup> S, P <sup>3</sup> R <sup>2</sup> S <sup>3</sup><br>P <sup>2</sup> QRS, P <sup>2</sup> QRS <sup>3</sup> | ŀ                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TRA                                    | $egin{array}{c} A_{2g}\ E_g\ T_{1g} \end{array}$                                            | 1<br>2<br>3                                                                       | 1<br>2<br>3                                                                          | 1<br>2<br>3                  | 1<br>2<br>3                      | $1 \\ 2 \\ -1$                             | $-\frac{1}{0}$                 |                                | $-1 \\ 0 \\ -1$                                                                                                                                                                                                                                                                                                               |                  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ICAL,<br>RING                          | $\begin{array}{c} A_{1u} \\ A_{2u} \\ E_{u} \\ T_{1u} \end{array}$                          | $     \begin{array}{c}       1 \\       1 \\       2 \\       3     \end{array} $ | 1<br>1<br>2<br>3                                                                     | 1<br>1<br>2<br>3             | 1<br>1<br>2<br>3                 | 1                                          |                                | 1<br>- 1<br>0                  | $-1 \\ 0 \\ -1$                                                                                                                                                                                                                                                                                                               |                  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATHEMA<br>HYSICAL<br>ENGINE<br>CIENCES | $K_{lpha}igg\{egin{array}{c} G_{lpha}\ K^+_{lpha}\ K^{lpha}\ K^{lpha}\ E_{eta} \end{array}$ | 4<br>4<br>4<br>2                                                                  | $     \begin{array}{r}       -4 \\       -4 \\       -4 \\       2     \end{array} $ | 4 $4$ $4$ $-2$               | $     -4 \\     -4 \\     -2   $ | $\begin{array}{c} 0 \\ 0 \\ 2 \end{array}$ | 2 - 1 - 1 2                    |                                | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                              |                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ALA                                    | $G_{\beta} \setminus G_{\beta}^{-}$<br>$I_{\beta}$<br>$G^{+}$                               | $egin{array}{c} 2 \\ 6 \\ 2 \end{array}$                                          | $2 \\ 6 \\ -2 \\ -2$                                                                 | $-\frac{1}{2}$<br>- 6<br>- 2 | $-2 \\ -6 \\ 2$                  | $-{2\atop 0}$                              | $-\frac{1}{0}$                 | -1<br>0<br>-1                  | 0<br>0<br>0                                                                                                                                                                                                                                                                                                                   | —i<br>i          |
| $ \begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & $ | щΟ                                     | $G_{2\alpha\beta} \begin{cases} G_{2\alpha\beta} \\ G_{2\alpha\beta} \\ K \end{cases}$      | $2 \\ 4$                                                                          | $-2 \\ -4$                                                                           | $-\frac{2}{-4}$              | $2 \\ 4$                         | 0<br>0                                     | 1<br>- 1                       | -1<br>1                        | 0<br>0                                                                                                                                                                                                                                                                                                                        | i<br>— i         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | <i>O</i> <sub>h</sub>                                                                       | E                                                                                 |                                                                                      |                              |                                  | В                                          | BC                             | $AC^2 \ BC^2$                  | ABD<br>C <sup>2</sup> D<br>AC <sup>2</sup> D<br>BCD                                                                                                                                                                                                                                                                           | 1                |

PHILOSOPHICAL THE ROYAL MATHEMATICAL, TRANSACTIONS SOCIETY & BENGINE ERING SCIENCES

| <u> </u> | U        |  |
|----------|----------|--|
|          | Z        |  |
| 0        | =        |  |
| -        | <b>H</b> |  |
| Ζ.       | iii . a  |  |
| 33       |          |  |
| 55       | 20       |  |
| ₽≚       | 5        |  |
| ± ∾      | Zū       |  |
| ₹Z       | ш 🚍 н    |  |
| 21       |          |  |
|          |          |  |

| MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES       |                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                           |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                             |                                                                                                          |                                                                                                                     |                                                                                        |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| <b>V</b> T                                                   |                                                                                                                                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                           |                                                                                                                                                                                                                                                                                           | TABLE 3                                                                                                                                                                                                                                                     | (cont.)                                                                                                  |                                                                                                                     |                                                                                        |
|                                                              | 12e <sub>8</sub><br><i>PS</i> <sup>3</sup><br><i>P<sup>2</sup>QS</i> <sup>3</sup><br><i>PQRS</i> <sup>3</sup><br><i>P<sup>3</sup>RS</i> <sup>3</sup><br><i>QR</i> <sup>2</sup> <i>S</i> <sup>3</sup><br><i>P<sup>3</sup>QR</i> <sup>2</sup> <i>S</i> <sup>3</sup><br><i>PS</i> | 12e <sub>8</sub><br>QS<br>P <sup>3</sup> S<br>PRS<br>P <sup>3</sup> QRS<br>PQR <sup>2</sup> S<br>P <sup>2</sup> QR <sup>2</sup> S<br>QS <sup>3</sup>                     | 6e4                                                                                                                       | 86 <sub>6</sub>                                                                                                                                                                                                                                                                           | 86 <sub>6</sub>                                                                                                                                                                                                                                             | $2\epsilon_4$                                                                                            | $2\epsilon_4$                                                                                                       | 1<br>F<br>P<br>P<br>Q<br>P<br>Q<br>P<br>Q<br>P<br>Q<br>P<br>Q<br>P<br>Q<br>P<br>Q<br>P |
| PHILOSOPHICAL<br>TRANSACTIONS                                | P <sup>2</sup> QS<br>PQRS<br>P <sup>3</sup> RS<br>QR <sup>2</sup> S<br>P <sup>3</sup> QR <sup>2</sup> S                                                                                                                                                                        | P <sup>3</sup> S <sup>3</sup><br>PRS <sup>3</sup><br>P <sup>3</sup> QRS <sup>3</sup><br>PQR <sup>2</sup> S <sup>3</sup><br>P <sup>2</sup> QR <sup>2</sup> S <sup>3</sup> | $PS^2, P^3S^2$<br>$QS^2, P^2QS^2$<br>$PQS^2, P^3QS^2$                                                                     | PRS <sup>2</sup> , P <sup>3</sup> QR <sup>2</sup> S <sup>2</sup><br>QRS <sup>2</sup> , P <sup>3</sup> R <sup>2</sup> S <sup>2</sup><br>PQRS <sup>2</sup> , P <sup>2</sup> QR <sup>2</sup> S <sup>2</sup><br>P <sup>2</sup> RS <sup>2</sup> , P <sup>2</sup> R <sup>2</sup> S <sup>2</sup> | R <sup>2</sup> S <sup>2</sup> , RS <sup>2</sup><br>PR <sup>2</sup> S <sup>2</sup> , P <sup>2</sup> QRS <sup>2</sup><br>QR <sup>2</sup> S <sup>2</sup> , P <sup>3</sup> QRS <sup>2</sup><br>PQR <sup>2</sup> S <sup>2</sup> , P <sup>3</sup> RS <sup>2</sup> | $S^2T \ T$                                                                                               | $P^2S^2T  onumber P^2T$                                                                                             | $P^2 \ P^3 \ P^3, \ P^2 Q \ P^3 Q$                                                     |
| LA MATHEMATICAL, PHI<br>PHYSICAL, BHIVSICAL, TRU<br>SCIENCES | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                  | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                 | $ \begin{array}{c} 1\\ 1\\ 2\\ -1\\ -1\\ 1\\ 1\\ 2\\ -1\\ -1\\ -1\\ 0\\ 0\\ 0\\ -2\\ -2\\ -2\\ -2\\ 2\\ 0\\ \end{array} $ | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ 2 \\ -1 \\ -1 \\ -2 \\ 1 \\ 1 \\ 0 \\ -1 \\ \end{array} $                                                                                                                                                                    | $ \begin{array}{c} 1 \\ 1 \\ -1 \\ 0 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ -2 \\ 1 \\ 1 \\ -2 \\ 1 \\ 1 \\ 0 \\ 1 \end{array} $                                                                                                                                      | $ \begin{array}{c} 1\\ 1\\ 2\\ 3\\ -1\\ -1\\ -2\\ -3\\ -3\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 2i \end{array} $ | $ \begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \\ -1 \\ -1 \\ -2 \\ -3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -2i \end{array} $ |                                                                                        |
| шŪ                                                           | $ \begin{array}{c} \mathbf{i}\sqrt{2}\\ \mathbf{i}\sqrt{2}\\ \mathbf{i}\sqrt{2}\\ \mathbf{i}\sqrt{2}\\ 0\\ 0\\ \mathbf{AD}\\ \end{array} $                                                                                                                                     | $ \begin{array}{c} -i\sqrt{2} \\ -i\sqrt{2} \\ i\sqrt{2} \\ 0 \\ 0 \\ \hline BD \end{array} $                                                                            | 0<br>0<br>0<br>0<br>0                                                                                                     | $     \begin{array}{r}       -1 \\       -1 \\       -1 \\       1 \\       1     \end{array} $                                                                                                                                                                                           | 1<br>1<br>-1<br>-1                                                                                                                                                                                                                                          | -2i $2i$ $-2i$ $4i$ $-4i$ $I$                                                                            | 2i<br>- 2i<br>2i<br>- 4i<br>4i                                                                                      |                                                                                        |
| TRANSACTIONS SO                                              | AD<br>ABCD<br>BC <sup>2</sup> D                                                                                                                                                                                                                                                | ACD<br>ABC <sup>2</sup> D                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                             | 1                                                                                                        |                                                                                                                     | Â                                                                                      |

| 126.                                                                                                                                                                      | 86-10                                                                                                                                                                                                      | 86.                                                                                                       | 8610                                                                                    | 8610                                                                              | $24\epsilon$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 126.                                                                                                                                                                                                                                                                                                                              |                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| PT<br>QT<br>PQT<br>PS <sup>2</sup> T<br>QS <sup>2</sup> T<br>P <sup>3</sup> T<br>P <sup>3</sup> QT<br>P <sup>3</sup> S <sup>2</sup> T<br>P <sup>3</sup> QS <sup>2</sup> T | PRT<br>QRT<br>PQRT<br>P <sup>2</sup> RT<br>P <sup>3</sup> R <sup>2</sup> S <sup>2</sup> T<br>P <sup>3</sup> QR <sup>2</sup> S <sup>2</sup> T<br>P <sup>3</sup> QR <sup>2</sup> S <sup>2</sup> T            | $PQR^{2}T$<br>$PR^{2}T$<br>$QR^{2}T$<br>$RS^{2}T$<br>$P^{2}QRS^{2}T$<br>$P^{3}QRS^{2}T$<br>$P^{3}RS^{2}T$ | $P^2R^2T$<br>$P^3R^2T$<br>$P^2QR^2T$<br>$PRS^2T$<br>$QRS^2T$<br>$PQRS^2T$<br>$P^2RS^2T$ | $RT$ $P^{2}QRT$ $P^{3}QRT$ $P^{3}RT$ $PQR^{2}S^{2}T$ $QR^{2}S^{2}T$ $R^{2}S^{2}T$ | <i>ST</i> , <i>P</i> <sup>2</sup> <i>ST</i><br><i>PQST</i> , <i>P</i> <sup>3</sup> <i>QST</i><br><i>R</i> <sup>3</sup> <i>ST</i> , <i>P</i> <sup>2</sup> <i>R</i> <sup>2</sup> <i>ST</i><br><i>PR</i> <sup>2</sup> <i>ST</i> , <i>P</i> <sup>3</sup> <i>R</i> <sup>3</sup> <i>ST</i><br><i>QRST</i> , <i>P</i> <sup>2</sup> <i>QRST</i><br><i>P</i> <sup>2</sup> <i>RST</i> , <i>RST</i><br><i>S</i> <sup>3</sup> <i>T</i> , <i>P</i> <sup>2</sup> <i>S</i> <sup>3</sup> <i>T</i><br><i>PQS</i> <sup>3</sup> <i>T</i> , <i>P</i> <sup>3</sup> <i>QS</i> <sup>3</sup> <i>T</i><br><i>R</i> <sup>2</sup> <i>S</i> <sup>3</sup> <i>T</i> , <i>P</i> <sup>2</sup> <i>R</i> <sup>2</sup> <i>S</i> <sup>3</sup> <i>T</i><br><i>QRS</i> <sup>3</sup> <i>T</i> , <i>P</i> <sup>2</sup> <i>R</i> <sup>2</sup> <i>S</i> <sup>3</sup> <i>T</i><br><i>PR</i> <sup>2</sup> <i>S</i> <sup>3</sup> <i>T</i> , <i>P</i> <sup>2</sup> <i>R</i> <sup>2</sup> <i>S</i> <sup>3</sup> <i>T</i><br><i>PR</i> <sup>2</sup> <i>S</i> <sup>3</sup> <i>T</i> , <i>P</i> <sup>2</sup> <i>RS</i> <sup>3</sup> <i>T</i><br><i>PRS</i> <sup>3</sup> <i>T</i> , <i>P</i> <sup>2</sup> <i>QRS</i> <sup>3</sup> <i>T</i><br><i>P</i> <sup>2</sup> <i>RS</i> <sup>3</sup> <i>T</i> , <i>RS</i> <sup>3</sup> <i>T</i> | PST, P <sup>2</sup> QST<br>PQRST, P <sup>3</sup> RST<br>QR <sup>2</sup> ST, P <sup>3</sup> QR <sup>2</sup> ST<br>PS <sup>3</sup> T, P <sup>2</sup> QS <sup>3</sup> T<br>PQRS <sup>3</sup> T, P <sup>3</sup> QR <sup>2</sup> S <sup>3</sup> T<br>QR <sup>2</sup> S <sup>3</sup> T, P <sup>3</sup> QR <sup>2</sup> S <sup>3</sup> T | P<br>P(                                              |
| 1                                                                                                                                                                         | 1                                                                                                                                                                                                          | 1                                                                                                         | 1                                                                                       | 1                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                 |                                                      |
|                                                                                                                                                                           | 1                                                                                                                                                                                                          |                                                                                                           | -                                                                                       | _                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1                                                                                                                                                                                                                                                                                                                                |                                                      |
|                                                                                                                                                                           | -1                                                                                                                                                                                                         |                                                                                                           |                                                                                         |                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                 |                                                      |
| -                                                                                                                                                                         | 0                                                                                                                                                                                                          |                                                                                                           | -                                                                                       |                                                                                   | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                 |                                                      |
| -                                                                                                                                                                         | -1                                                                                                                                                                                                         |                                                                                                           |                                                                                         | -1                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1                                                                                                                                                                                                                                                                                                                                |                                                      |
|                                                                                                                                                                           | -1                                                                                                                                                                                                         | -1                                                                                                        | -1                                                                                      | -1                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                 |                                                      |
| $-\frac{1}{2}$                                                                                                                                                            | 1                                                                                                                                                                                                          |                                                                                                           | 1                                                                                       | - 1                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                 |                                                      |
| 1                                                                                                                                                                         | 0                                                                                                                                                                                                          | 0                                                                                                         | 0                                                                                       | 0                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1                                                                                                                                                                                                                                                                                                                                |                                                      |
| 1                                                                                                                                                                         | 0                                                                                                                                                                                                          | 0                                                                                                         | 0                                                                                       | 0                                                                                 | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                 |                                                      |
| 0                                                                                                                                                                         | 0                                                                                                                                                                                                          | 0                                                                                                         | 0                                                                                       | 0                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                 |                                                      |
| 0                                                                                                                                                                         | $-i\sqrt{3}$                                                                                                                                                                                               | $i\sqrt{3}$                                                                                               | $-i\sqrt{3}$                                                                            | $i\sqrt{3}$                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                 |                                                      |
| 0                                                                                                                                                                         |                                                                                                                                                                                                            | $-i\sqrt{3}$                                                                                              | i√3                                                                                     | $-i\sqrt{3}$                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                 |                                                      |
| 0                                                                                                                                                                         | 0                                                                                                                                                                                                          | 0                                                                                                         | 0                                                                                       | 0                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                 |                                                      |
|                                                                                                                                                                           |                                                                                                                                                                                                            |                                                                                                           | $i\sqrt{3}$                                                                             | $-i\sqrt{3}$                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                   |                                                      |
|                                                                                                                                                                           |                                                                                                                                                                                                            |                                                                                                           | $-i\sqrt{3}$                                                                            | $1\sqrt{3}$                                                                       | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                 |                                                      |
|                                                                                                                                                                           | 0                                                                                                                                                                                                          |                                                                                                           |                                                                                         | 0                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                   |                                                      |
|                                                                                                                                                                           | 1                                                                                                                                                                                                          |                                                                                                           |                                                                                         | -1                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\sqrt{\frac{2}{2}}$                                                                                                                                                                                                                                                                                                              |                                                      |
|                                                                                                                                                                           | — I<br>i                                                                                                                                                                                                   | i                                                                                                         | -                                                                                       | i                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                   |                                                      |
|                                                                                                                                                                           | i                                                                                                                                                                                                          | -1<br>i                                                                                                   |                                                                                         |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                   |                                                      |
|                                                                                                                                                                           | — i                                                                                                                                                                                                        | •                                                                                                         |                                                                                         | i                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                   |                                                      |
| 0                                                                                                                                                                         | i                                                                                                                                                                                                          | — i                                                                                                       | i                                                                                       | — i                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                 |                                                      |
| AI<br>BI<br>ABI                                                                                                                                                           | ACI<br>BCI<br>ABCI                                                                                                                                                                                         |                                                                                                           | C <sup>2</sup> I<br>AC <sup>2</sup> I<br>ABC <sup>2</sup> I                             | CI                                                                                | DI<br>ABDI<br>C <sup>2</sup> DI<br>AC <sup>2</sup> DI<br>BCDI<br>CDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ADI<br>ABCDI<br>BC°DI                                                                                                                                                                                                                                                                                                             |                                                      |
|                                                                                                                                                                           | $\begin{array}{c} QT\\ PQT\\ PQT\\ PS^2T\\ QS^2T\\ P^3Q^2T\\ P^3QT\\ P^3QT\\ P^3QT\\ P^3QS^2T\\ \hline 1\\ 1\\ 2\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                             | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

 $\mathbf{256}$ 

L. L. BOYLE A

# )YLE AND KERIE F. GREEN

| $12\epsilon_8$                                                                                                                                                                                                                                                                                                                                            | 192 elements                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                       |
| ,<br>,                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                       |
| QST, P <sup>2</sup> ST<br>T PRST, P <sup>3</sup> QRST<br>ST PQR <sup>2</sup> ST, P <sup>2</sup> QR <sup>2</sup> ST<br>GS <sup>3</sup> T, P <sup>3</sup> S <sup>3</sup> T<br>S <sup>3</sup> T PRS <sup>3</sup> T, P <sup>3</sup> QRS <sup>3</sup> T<br>S <sup>3</sup> T PQR <sup>2</sup> S <sup>3</sup> T, P <sup>2</sup> QR <sup>2</sup> S <sup>3</sup> T | $\begin{array}{l} P^{4} = Q^{4} = R^{3} = S^{4} = T^{4} = E \\ P^{2} = Q^{2} = T^{2} \\ QP = P^{3}Q; \ RP = QR; \ RQ = PQR \\ SP = P^{2}QS; \ SQ = P^{3}S; \ SR = R^{2}S \\ TP = PT; \ TQ = QT; \ TR = RT \\ TS = S^{3}T \end{array}$ |
| $ \begin{array}{r} 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ -1 \\ 1 \\ 0 \\ -1 \\ 1 \\ 2 \\ \end{array} $                                                                                                                                                                                                                                                               | $ \left. \begin{array}{l} \alpha = +1; \ \beta = +1 \end{array} \right. $                                                                                                                                                             |
| 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                          | $\begin{cases} \alpha = -1; \beta = +1 \end{cases}$                                                                                                                                                                                   |
| $0 \\ 0 \\ 0 \\ -\sqrt{2} \\ -\sqrt{2}$                                                                                                                                                                                                                                                                                                                   | $\left\{ \begin{array}{l} \alpha = +1; \ \beta = -1 \end{array} \right\}$                                                                                                                                                             |
| $\begin{array}{c} -\sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \\ 0 \\ 0 \end{array}$                                                                                                                                                                                                                                                                                | $\left\{\begin{array}{l} \alpha = -1; \ \beta = -1 \end{array}\right.$                                                                                                                                                                |
| BDI<br>ACDI<br>ABC²DI                                                                                                                                                                                                                                                                                                                                     | $A^{2} = B^{2} = C^{2} = D^{2} = I^{2} = E$<br>BA = AB; CA = BC; CB = ABC<br>$DA = BD; DB = AD; DC = C^{2}D;$<br>IA = AI; IB = BI; IC = CI;<br>ID = DI                                                                                |

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

| V                                                      |                                                                                                                                                          |                                                                                                                               |                                                                           |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                  |                                                                                                                |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| /<br>AL                                                |                                                                                                                                                          |                                                                                                                               |                                                                           |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                      |                                                                                                                                                                  | TABLE 3 (cont.)                                                                                                |
| JΥ/<br>ΤΥ                                              |                                                                                                                                                          | $1\epsilon_1$                                                                                                                 | $1\epsilon_2$                                                             | $30\epsilon_4$                                                                                                                                                                                                                                                                                                                             | $20\epsilon_6$                                                                                                                                                                                                       | $20\epsilon_{3}$                                                                                                                                                 | $12\epsilon_5$                                                                                                 |
| PHILOSOPHICAL THE RO<br>TRANSACTIONS SOCIET            |                                                                                                                                                          |                                                                                                                               |                                                                           | $P, P^{3}$<br>$Q, P^{2}Q$<br>$PQ, P^{3}Q$<br>$PV, P^{3}V$<br>$PV^{2}, P^{3}V^{2}$<br>$PV^{3}, P^{3}V^{3}$<br>$PV^{4}, P^{3}V^{4}$<br>$PRV^{2}, P^{3}RV^{2}$<br>$PR^{2}V^{2}, P^{3}R^{2}V^{2}$<br>$PQRV^{4}, P^{3}QRV^{4}$<br>$PQR^{2}V^{3}, P^{3}QR^{2}V^{3}$<br>$RV, P^{2}RV$<br>$R^{2}V^{4}, P^{2}R^{2}V^{4}$<br>$QRV^{3}, P^{2}QRV^{3}$ | $PR, P^{3}QR^{2}$<br>$QR, P^{3}R^{2}$<br>$PQR, P^{2}QR^{2}$<br>$PQR^{2}V, PR^{2}V^{4}$<br>$QV, R^{2}V^{3}$<br>$PQV^{3}, P^{3}RV^{4}$<br>$QR^{2}V^{2}, P^{2}QV^{4}$<br>$RV^{2}, P^{3}QRV^{3}$<br>$P^{2}R, P^{2}R^{2}$ | $R, R^2$<br>$PR^2, P^2QR$<br>$PQR^2, P^3R$<br>$QR^2, P^3QR$<br>$QV^4, P^2QR^2V^2$<br>$PQV^2, QRV$<br>$PQRV^3, P^2RV^2$<br>$PRV^4, P^3QV^3$<br>$P^2QV, P^2R^2V^3$ | $V, V^4$<br>$QV^2, P^2RV^4$<br>$RV^3, P^2QR^2V^4$<br>$PQRV, P^2QV^3$<br>$R^2V^2, QR^2V^3$                      |
|                                                        | $\mathscr{R}(I)$                                                                                                                                         | E                                                                                                                             | $P^2$                                                                     | $QR^2V, P^2QR^2V$                                                                                                                                                                                                                                                                                                                          | $P^2QRV$ , $P^3QV^2$                                                                                                                                                                                                 | $P^3R^2V^4, P^3QR^2V$                                                                                                                                            | $P^2R^2V, P^3QRV^2$                                                                                            |
| MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES | $\begin{array}{c} A \\ T_{1} \\ T_{2} \\ G \\ H \\ E_{1}^{\frac{1}{2}} \\ E_{7}^{\frac{1}{2}} \\ G_{3}^{\frac{3}{2}} \\ I_{5}^{\frac{1}{2}} \end{array}$ | $     \begin{array}{r}       1 \\       3 \\       4 \\       5 \\       2 \\       2 \\       4 \\       6     \end{array} $ | $ \begin{array}{r} 1 \\ 3 \\ 4 \\ 5 \\ -2 \\ -2 \\ -4 \\ -6 \end{array} $ | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $                                                                                                                                                                                                                                                                | $ \begin{array}{c} 1 \\ 0 \\ 0 \\ 1 \\ -1 \\ 1 \\ -1 \\ 0 \\ \end{array} $                                                                                                                                           | $ \begin{array}{c} 1\\ 0\\ 0\\ 1\\ -1\\ -1\\ -1\\ 1\\ 0 \end{array} $                                                                                            | $ \begin{array}{c} 1 \\ \Phi \\ \Phi^{-1} \\ -1 \\ 0 \\ -\Phi \\ \Phi^{-1} \\ -1 \\ 1 \end{array} $            |
| PHILOSOPHICAL THE ROYAL A FRANSACTIONS SOCIETY         | Ι                                                                                                                                                        | E                                                                                                                             |                                                                           | $\begin{array}{c} A\\ B\\ AB\\ AF\\ AF^2\\ AF^3\\ AF^4\\ ACF^2\\ AC^2F^2\\ ABCF^4\\ ABC^2F^3\\ CF\\ C^2F^4\\ BCF^3\\ BCF^3\\ BC^2F\end{array}$                                                                                                                                                                                             | AC<br>BC<br>ABC <sup>2</sup> F, AC <sup>2</sup> F <sup>4</sup><br>BF, C <sup>2</sup> F <sup>3</sup><br>ABF <sup>3</sup><br>BC <sup>2</sup> F <sup>2</sup><br>CF <sup>2</sup>                                         | $C, C^{2}$ $AC^{2}$ $ABC^{2}$ $BF^{4}$ $ABF^{2}, BCF$ $ABCF^{3}$ $ACF^{4}$ $(\Phi = \frac{1}{2}(1 + \sqrt{5})$                                                   | $F, F^{4} \\ BF^{2} \\ CF^{3} \\ ABCF \\ C^{2}F^{2}, BC^{2}F^{3}$ ; $\Phi^{-1} = \frac{1}{2}(-1 + \sqrt{5}).)$ |

257

| MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES |              |                                                                                                                                                         |                                                                                                                        |                                                                                                                                                                                      |                                                                                                                                             |
|--------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| THE ROYAL A<br>SOCIETY                                 | cont.)       | $12\epsilon_5$                                                                                                                                          | $12\epsilon_{10}$                                                                                                      | 12e <sub>10</sub>                                                                                                                                                                    | 120 elements                                                                                                                                |
| PHI<br>TR/                                             | 4<br>3<br>'2 | $V^{2}, V^{3}$<br>$PQV, P^{3}QR^{2}V^{2}$<br>$QRV^{2}, PQR^{2}V^{4}$<br>$PRV^{3}, PR^{2}V$<br>$P^{3}RV, P^{2}QRV^{4}$<br>$P^{3}R^{2}V^{3}, P^{3}QV^{4}$ | $QV^3, P^3QRV$<br>$R^2V, PQRV^2$<br>$RV^4, P^2QV^2$<br>$QR^2V^4, P^2RV^3$<br>$P^2V, P^2V^4$<br>$P^2R^2V^2, P^2QR^2V^3$ | $\begin{array}{c} PRV, QRV^{4} \\ PR^{2}V^{3}, PQV^{4} \\ PQR^{2}V^{2}, P^{3}QV \\ P^{2}V^{2}, P^{2}V^{3} \\ P^{2}QRV^{2}, P^{3}QR^{2}V^{4} \\ P^{3}R^{2}V, P^{3}RV^{3} \end{array}$ | $P^{4} = Q^{4} = R^{3} = V^{5} = E$ $Q^{2} = P^{2}$ $QP = P^{3}Q; RP = QR$ $RQ = PQR; VP = PV^{4}$ $VQ = QR^{2}V^{2}; VR = P^{2}R^{2}V^{4}$ |
| MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES |              | $ \begin{array}{c} 1 \\ \Phi^{-1} \\ \Phi \\ -1 \\ 0 \\ -\Phi^{-1} \\ \Phi \\ 1 \\ -1 \end{array} $                                                     | $ \begin{array}{c} 1 \\ \Phi \\ \Phi^{-1} \\ -1 \\ 0 \\ \Phi \\ -\Phi^{-1} \\ 1 \\ -1 \end{array} $                    | $ \begin{array}{c} 1 \\ \Phi^{-1} \\ \Phi \\ -1 \\ 0 \\ \Phi^{-1} \\ -\Phi \\ -1 \\ 1 \end{array} $                                                                                  | $\begin{vmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                  |
| PHILOSOPHICAL THE ROYAL A                              | ý).)         | F <sup>2</sup> ,F <sup>3</sup><br>ABF<br>BCF <sup>2</sup> ,ABC <sup>2</sup> F <sup>4</sup><br>ACF <sup>3</sup> ,AC <sup>2</sup> F                       | BF <sup>3</sup><br>C <sup>2</sup> F, ABCF <sup>2</sup><br>CF <sup>4</sup><br>BC <sup>2</sup> F <sup>4</sup>            | ACF, BCF4<br>AC <sup>2</sup> F <sup>3</sup> , ABV4<br>ABC <sup>2</sup> F <sup>2</sup>                                                                                                | $A^{2} = B^{2} = C^{3} = F^{5} = E$ $BA = AB; CA = BC$ $CB = ABC; FA = AF^{4}$ $FB = BC^{2}F^{2}; FC = C^{2}F^{4}$ $F^{2}C = BF$            |

| Į                                                                     | $\mathcal{R}_1(I_n)$                                                                    | $) = \mathscr{R}(I)$                                   | $\times \{E, I\}$                                        | <i>T</i> }                                                                                                                                                             |                                                                                                                                                         |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|                                                                       |                                                                                         |                                                        | .e <sub>2</sub>                                          | $30\epsilon_4$                                                                                                                                                         | $20\epsilon_{6}$                                                                                                                                        | $20\epsilon_{3}$                                                                                                                                                                                             | $12\epsilon_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |
| HICAL THE ROYAL MATHEMATICAL<br>TONS SOCIETY & BHYSICAL<br>& SCIENCES |                                                                                         |                                                        |                                                          | $P, P^3$<br>$Q, P^2Q$<br>$PQ, P^3Q$<br>$PV, P^3V$<br>$PV^2, P^3V^2$<br>$PV^3, P^3V^3$<br>$PV^4, P^3V^4$                                                                | $PR, P^3QR^2$<br>$QR, P^3R^2$                                                                                                                           | $R,R^2$<br>$PR^2,P^2QR$                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |
| PHILOSOPHICAL<br>TRANSACTIONS                                         | $I_{h}$ )                                                                               | E P                                                    |                                                          | $PRV^2, P^3RV^2$<br>$PRV^2, P^3R^2V^2$<br>$PQRV^4, P^3QRV^4$<br>$PQR^2V^3, P^3QR^2V^3$<br>$RV, P^2RV$<br>$R^2V^4, P^2R^2V^4$<br>$QRV^3, P^2QRV^3$<br>$QR^2V, P^2QR^2V$ | $QR, P^2QR^2$<br>$PQR^2V, PR^2V^4$<br>$QV, R^2V^3$<br>$PQV^3, P^3RV^4$<br>$QR^2V^2, P^2QV^4$<br>$RV^2, P^3QRV^3$<br>$P^2R, P^2R^2$<br>$P^2QRV, P^3QV^2$ | $PQR^{2}, P^{3}R$<br>$QR^{2}, P^{3}QR$<br>$QV^{4}, P^{2}QR^{2}V^{2}$<br>$PQV^{2}, QRV$<br>$PQRV^{3}, P^{2}RV^{2}$<br>$PRV^{4}, P^{3}QV^{3}$<br>$P^{2}QV, P^{2}R^{2}V^{3}$<br>$P^{3}R^{2}V^{4}, P^{3}QR^{2}V$ | $V, V^4 \\ QV^2, P^2RV^4 \\ RV^3, P^2QR^2V^4 \\ PQRV, P^2QV^3 \\ R^2V^2, QR^2V^3 \\ P^2R^2V, P^3QRV^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PQ<br>QR<br>PI<br>P3R<br>P3R |
| YAL A PHYSICAL<br>PHYSICAL<br>Sciences<br>Sciences<br>Construction    | $ \begin{array}{c}                                     $                                | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$  | 3<br>4<br>5<br>4<br>5<br>4<br>5<br>2<br>2<br>2<br>2<br>2 | $ \begin{array}{c} 1 \\ -1 \\ -1 \\ 0 \\ 1 \\ 1 \\ -1 \\ -1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                               | $ \begin{array}{c} 1\\ 0\\ 0\\ 1\\ -1\\ 1\\ 0\\ 0\\ 1\\ -1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1 \end{array} $                                                        | $ \begin{array}{c} 1\\ 0\\ 0\\ 1\\ -1\\ 1\\ 0\\ 0\\ 1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\$                                                                                                        | $ \begin{array}{c} 1 \\ \phi \\ \phi^{-1} \\ -1 \\ 0 \\ 1 \\ \phi \\ \phi^{-1} \\ -1 \\ 0 \\ -\phi \\ -\phi \\ -\phi \\ \phi^{-1} \\ \phi^{-1} \\ \phi^{-1} \\ 0 \\ -\phi \\ -\phi \\ \phi^{-1} \\ \phi^{-$ |                              |
| RO<br>IET                                                             | $\begin{array}{c} K^+_{\alpha} \\ K^{\alpha} \\ D^+_{\alpha} \\ D^{\alpha} \end{array}$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | <b>1</b><br>3                                            | 0<br>0<br>0<br>0                                                                                                                                                       | -1<br>-1<br>0<br>0                                                                                                                                      | 1<br>1<br>0<br>0                                                                                                                                                                                             | -1<br>-1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |
| PHILOSOPHICAL THE<br>TRANSACTIONS SOC<br>SOC                          | I <sub>h</sub>                                                                          | E                                                      |                                                          | $\begin{array}{c} A\\ B\\ AB\\ AF\\ AF^2\\ AF^3\\ AF^4\\ ACF^2\\ AC^2F^2\\ ABCF^4\\ ABC^2F^3\\ CF\\ \end{array}$                                                       | $egin{array}{c} AC \\ BG \\ ABC \\ ABC^2F, AC^2F^4 \\ BF, C^2F^3 \\ ABF^3 \\ BC^2F^2 \\ CF^2 \end{array}$                                               | $C, C^2$<br>$AC^2$<br>$ABC^2$<br>$BC^2$<br>$BF^4$<br>$ABF^2, BCF$<br>$ABCF^3$<br>$ACF^4$                                                                                                                     | $F, F^4$<br>$BF^2$<br>$CF^3$<br>ABCF<br>$C^2F^2, BC^2F^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BCI<br>AC                    |
|                                                                       |                                                                                         |                                                        |                                                          | $C^2F^4$<br>BCF <sup>3</sup><br>BC <sup>2</sup> F                                                                                                                      | $(\varPhi=rac{1}{2}(1+\sqrt{5}); \varPhi^{-1}=rac{1}{2}$                                                                                              | $(-1 + \sqrt{5}).)$                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |

 $\mathbf{258}$ 

TABLE 3 (cont.)

|                                                        | $12\epsilon_5$                                                                                                                                                                                                                                                                                                                       | $12\epsilon_{10}$                                                                                                      | $12\epsilon_{10}$                                                                                                         | $1\epsilon_4$                                                             | $1\epsilon_4$                                                                           | $30\epsilon_2$                                                                                                                                                                                                                                                             | $20\epsilon_{12}$                                                                                                                                                                                          |                                                                                 |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| ROYAL MATHEMATICAL,<br>IETY & BIGINGERING              |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                        |                                                                                                                           |                                                                           |                                                                                         | PT<br>$P^{3}T$<br>QT<br>$P^{2}QT$<br>PQT<br>$P^{3}QT$<br>PVT<br>$P^{3}VT$<br>$P^{3}V^{2}T$<br>$P^{3}V^{3}T$<br>$P^{3}V^{3}T$<br>$PV^{4}T$<br>$P^{3}V^{2}T$                                                                                                                 | PRT<br>QRT<br>PQRT<br>PQR <sup>2</sup> VT<br>QVT                                                                                                                                                           | P<br>1<br>(<br>P <sup>3</sup><br>P <sup>2</sup>                                 |
| THE                                                    |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                        |                                                                                                                           |                                                                           |                                                                                         | $P^3RV^2T$<br>$PR^2V^2T$<br>$P^3R^2V^2T$                                                                                                                                                                                                                                   | $PQV^{3}T \ QR^{2}V^{2}T \ RV^{2}T$                                                                                                                                                                        | Р<br>(<br>Р(                                                                    |
|                                                        | V <sup>2</sup> , V <sup>3</sup><br><sup>2</sup> QV, P <sup>3</sup> QR <sup>2</sup> V <sup>2</sup><br>)RV <sup>2</sup> , PQR <sup>2</sup> V <sup>4</sup><br>PRV <sup>3</sup> , PR <sup>2</sup> V<br><sup>13</sup> RV, P <sup>2</sup> QRV <sup>4</sup><br><sup>23</sup> R <sup>2</sup> V <sup>3</sup> , P <sup>3</sup> QV <sup>4</sup> | $QV^3, P^3QRV$<br>$R^2V, PQRV^2$<br>$RV^4, P^2QV^2$<br>$QR^2V^4, P^2RV^3$<br>$P^2V, P^2V^4$<br>$P^2R^2V^2, P^2QR^2V^3$ | $PRV, QRV^4$<br>$PR^2V^3, PQV^4$<br>$PQR^2V^2, P^3QV$<br>$P^2V^2, P^2V^3$<br>$P^2QRV^2, P^3QR^2V^4$<br>$P^3R^2V, P^3RV^3$ | T                                                                         | $P^2T$                                                                                  | $PQRV^{4}T$<br>$P^{3}QRV^{4}T$<br>$PQR^{2}V^{3}T$<br>RVT<br>$P^{2}RVT$<br>$R^{2}V^{4}T$<br>$P^{2}R^{2}V^{4}T$<br>$QRV^{3}T$<br>$P^{2}QRV^{3}T$<br>$QR^{2}VT$<br>$P^{2}QR^{2}VT$                                                                                            | $P^{2}RT$<br>$P^{2}QRVT$<br>$P^{3}QR^{2}T$<br>$P^{3}R^{2}T$<br>$P^{2}QR^{2}T$<br>$PR^{2}V^{4}T$<br>$R^{2}V^{3}T$<br>$P^{3}RV^{4}T$<br>$P^{2}QV^{4}T$<br>$P^{3}QRV^{3}T$<br>$P^{2}R^{2}T$<br>$P^{3}QV^{2}T$ | P<br>1<br>P<br>P <sup>3</sup> (<br>P<br>P <sup>2</sup> (<br>P <sup>2</sup><br>Q |
| MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES | $ \begin{array}{c} 1 \\ \Phi^{-1} \\ \Phi \\ -1 \\ 0 \\ 1 \\ \Phi^{-1} \\ \Phi \\ -1 \end{array} $                                                                                                                                                                                                                                   | $ \begin{array}{c} 1 \\ \Phi \\ \Phi^{-1} \\ -1 \\ 0 \\ 1 \\ \Phi \\ \Phi^{-1} \\ -1 \end{array} $                     | $ \begin{array}{c} 1\\ \varPhi^{-1}\\ \varPhi\\ -1\\ 0\\ 1\\ \varPhi^{-1}\\ \varPhi\\ -1 \end{array} $                    | $ \begin{array}{r} 1 \\ 3 \\ 4 \\ 5 \\ -1 \\ -3 \\ -3 \\ -4 \end{array} $ | $ \begin{array}{r} 1 \\ 3 \\ 4 \\ 5 \\ -1 \\ -3 \\ -3 \\ -4 \\ \end{array} $            | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 1 \\ 0 \\ \end{array} $                                                                                                                                                                                                      | $ \begin{array}{c} 1 \\ 0 \\ 1 \\ -1 \\ -1 \\ 0 \\ 0 \\ -1 \end{array} $                                                                                                                                   | -                                                                               |
| IE ROYAL A                                             | $ \begin{array}{c} 0 \\ - \Phi^{-1} \\ - \Phi^{-1} \\ \Phi \\ - 1 \\ - 1 \\ 1 \\ 1 \end{array} $                                                                                                                                                                                                                                     | $ \begin{array}{c} 0 \\ \phi \\ \phi \\ -\phi^{-1} \\ -\phi^{-1} \\ 1 \\ 1 \\ -1 \\ -1 \end{array} $                   | $ \begin{array}{c} 0 \\ \varPhi^{-1} \\ \varPhi^{-1} \\ - \varPhi \\ - \varPhi \\ 1 \\ 1 \\ - 1 \\ - 1 \end{array} $      | -5<br>2i<br>- 2i<br>2i<br>- 2i<br>4i<br>- 4i<br>6i<br>- 6i                | $ \begin{array}{r} -5 \\ -2i \\ 2i \\ -2i \\ 2i \\ -4i \\ 4i \\ -6i \\ 6i \end{array} $ | $ \begin{array}{c} -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $                                                                                                                                                                                           | $ \begin{array}{c} 1 \\ i \\ -i \\ -i \\ -i \\ 0 \\ 0 \end{array} $                                                                                                                                        |                                                                                 |
| PHILOSOPHICAL TH<br>TRANSACTIONS SO                    | F <sup>2</sup> , F <sup>3</sup><br>ABF<br>PCF <sup>2</sup> , ABC <sup>2</sup> F <sup>4</sup><br>ACF <sup>3</sup> , AC <sup>2</sup> F                                                                                                                                                                                                 | BF <sup>3</sup><br>C <sup>2</sup> F, ABCF <sup>2</sup><br>CF <sup>4</sup><br>BC <sup>2</sup> F <sup>4</sup>            | ACF, BCF <sup>4</sup><br>AC <sup>2</sup> F <sup>3</sup> , ABF <sup>4</sup><br>ABC <sup>2</sup> F <sup>2</sup>             | Ι                                                                         |                                                                                         | AI<br>BI<br>ABI<br>AF <sup>2</sup> I<br>AF <sup>3</sup> I<br>AF <sup>4</sup> I<br>AC <sup>2</sup> F <sup>2</sup> I<br>AC <sup>2</sup> F <sup>2</sup> I<br>ABC <sup>2</sup> F <sup>3</sup> I<br>C <sup>2</sup> F <sup>4</sup> I<br>BCF <sup>3</sup> I<br>BC <sup>2</sup> FI | ACI<br>BCI<br>ABC <sup>2</sup> FI<br>BFI<br>ABF <sup>3</sup> I<br>BC <sup>2</sup> F <sup>2</sup> I<br>CF <sup>2</sup> I<br>AC <sup>2</sup> F <sup>4</sup> I<br>C <sup>2</sup> F <sup>3</sup> I             | A<br>A<br>A<br>A<br>A<br>A                                                      |

|                                                        | $20\epsilon_{12}$                                                                                                                                                                                                                                     | $12\epsilon_{20}$                                                                                                                                                                    | $12\epsilon_{20}$                                                                                                                                                                                                    | $12\epsilon_{20}$                                                                                                                                                                                                                                                                                           | $12\epsilon_{20}$                                                                                                                                                                                         | 240 elements                                                                                                                                                                                                            |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES |                                                                                                                                                                                                                                                       |                                                                                                                                                                                      |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                           |                                                                                                                                                                                                                         |
| E ROYAL A<br>CIETY                                     | PQR <sup>2</sup> T<br>PR <sup>2</sup> T<br>QR <sup>2</sup> T<br>P <sup>3</sup> R <sup>2</sup> V <sup>4</sup> T<br>P <sup>2</sup> R <sup>2</sup> V <sup>3</sup> T<br>PRV <sup>4</sup> T                                                                |                                                                                                                                                                                      |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                           |                                                                                                                                                                                                                         |
| PHILOSOPHICAL TH<br>TRANSACTIONS SO                    | $\begin{array}{ccc} & QV^{4}T \\ & QV^{4}T \\ & PQRV^{3}T \\ & R^{2}T \\ & PQV^{2}T \\ & P^{3}RT \\ & P^{3}QRT \\ & P^{3}QR^{2}VT \\ & P^{3}QR^{2}VT \\ & P^{3}QV^{3}T \\ & P^{2}QR^{2}V^{2}T \\ & T \\ & P^{2}RV^{2}T \\ & RT \\ & QRVT \end{array}$ | VT<br>$V^{4}T$<br>$QV^{2}T$<br>$P^{2}RV^{4}T$<br>$RV^{3}T$<br>$P^{2}QR^{2}V^{4}T$<br>PQRVT<br>$P^{2}QV^{3}T$<br>$R^{2}V^{2}T$<br>$QR^{2}V^{3}T$<br>$P^{2}R^{2}VT$<br>$P^{3}QRV^{2}T$ | $P^2V^4T$<br>$P^2VT$<br>$RV^4T$<br>$P^2QV^2T$<br>$QR^2V^4T$<br>$P^2RV^3T$<br>$P^2QR^2V^3T$<br>$P^2QR^2V^3T$<br>$P^2R^2V^2T$<br>$PQRV^2T$<br>$R^2VT$                                                                  | V <sup>2</sup> T<br>V <sup>3</sup> T<br>PQVT<br>P <sup>3</sup> QR <sup>2</sup> V <sup>2</sup> T<br>QRV <sup>2</sup> T<br>PQR <sup>2</sup> V <sup>4</sup> T<br>PRV <sup>3</sup> T<br>P <sup>2</sup> QRV <sup>4</sup> T<br>P <sup>3</sup> R <sup>2</sup> V <sup>3</sup> T<br>P <sup>3</sup> QV <sup>4</sup> T | $P^{2}V^{3}T$<br>$P^{2}V^{2}T$<br>$PQR^{2}V^{2}T$<br>$P^{3}QVT$<br>$P^{3}QR^{2}V^{4}T$<br>$P^{2}QRV^{2}T$<br>$P^{3}R^{2}VT$<br>$P^{3}RV^{3}T$<br>$QRV^{4}T$<br>$PQV^{4}T$<br>$PQV^{4}T$<br>$PR^{2}V^{3}T$ | $P^{4} = Q^{4} = R^{3} = V^{5} = T^{4} = E$ $P^{2} = Q^{2} = T^{2}$ $QP = P^{3}Q; RP = QR$ $RQ = PQR; VP = PV^{4}$ $VQ = QR^{2}V^{2}; VR = P^{2}R^{2}V^{4}$ $TP = PT; TQ = QT$ $TR = RT; TV = VT$                       |
| YALA MATHEMATICAL,<br>PHYSICAL<br>SCIENCES             | $ \begin{array}{c} 1 \\ 0 \\ 0 \\ 1 \\ -1 \\ -1 \\ 0 \\ 0 \\ -1 \\ 1 \\ -i \\ i \\ -i \\ i \\ 1 \end{array} $                                                                                                                                         | $ \begin{array}{c} 1 \\ \Phi \\ \Phi^{-1} \\ -1 \\ 0 \\ -1 \\ -\Phi \\ -\Phi^{-1} \\ 1 \\ 0 \\ -i\Phi \\ i\phi \\ i\phi^{-1} \\ -i\phi^{-1} \\ -i\phi^{-1} \end{array} $             | $ \begin{array}{c} 1\\ \Phi^{-1}\\ \Phi\\ -1\\ 0\\ -1\\ -\Phi^{-1}\\ -\Phi\\ 1\\ 0\\ i\Phi\\ -i\Phi\\ -i\Phi^{-1}\\ i\Phi^{-1}\\ i\Phi^{-1} \end{array} $                                                            | $ \begin{array}{c} 1 \\ \Phi \\ \Phi^{-1} \\ -1 \\ 0 \\ -1 \\ -\phi^{-1} \\ 1 \\ 0 \\ -i\phi^{-1} \\ i\phi^{-1} \\ i\phi \\ -i\phi \end{array} $                                                                                                                                                            | $ \begin{array}{c} 1 \\                                   $                                                                                                                                               | $\alpha = +1$                                                                                                                                                                                                           |
| TRANSACTIONS SOCIET                                    | $\begin{array}{c} {\rm i} \\ -{\rm i} \\ 0 \\ 0 \\ \end{array} \\ \hline \\ ABC^2I \\ BC^2I \\ BC^2I \\ BC^2I \\ ACF^4I \\ BF^4I \\ ABCF^3 \\ C^2I \\ ABF^2I \\ CI \\ \end{array}$                                                                    | -i<br>i<br>i<br>FI<br>F <sup>4</sup> I<br>BF <sup>2</sup> I<br>CF <sup>3</sup> I<br>ABCFI<br>C <sup>2</sup> F <sup>2</sup> I<br>BC <sup>2</sup> F <sup>3</sup> I                     | -i<br>i<br>-i<br><i>CF</i> <sup>4</sup> <i>I</i><br><i>BC</i> <sup>2</sup> <i>F</i> <sup>4</sup> <i>I</i><br><i>BF</i> <sup>3</sup> <i>I</i><br><i>ABCF</i> <sup>2</sup> <i>I</i><br><i>C</i> <sup>2</sup> <i>FI</i> | i<br>—i<br>—i<br>F <sup>2</sup> I<br>F <sup>3</sup> I<br>ABFI<br>BCF <sup>2</sup> I<br>ABC <sup>2</sup> F <sup>4</sup> I<br>ACF <sup>3</sup> I<br>AC <sup>2</sup> FI                                                                                                                                        | i<br>—i<br>—i<br>BCF <sup>4</sup> I<br>ACFI<br>ABF <sup>4</sup> I<br>AC <sup>2</sup> F <sup>3</sup> I                                                                                                     | $ \begin{array}{c} \alpha = -1 \\ \hline \\ A^2 = B^2 = C^3 = F^5 = I^2 = E \\ BA = AB; CA = BC \\ CB = ABC; FA = AF^4 \\ FB = BC^2F^2; FC = C^2F^4 \\ F^2C = BF \\ IA = AI; IB = B, \\ IC = CI; IF = F_4 \end{array} $ |
| TR                                                     | BCFI                                                                                                                                                                                                                                                  |                                                                                                                                                                                      |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                           |                                                                                                                                                                                                                         |

|                        |        |        | TABLE 3 (cont.)                                          |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------|--------|--------|----------------------------------------------------------|----------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathscr{R}_1(K_h)$   | Ε      | R      | $\infty  C^{oldsymbol{\phi}}_{\infty}$                   | $S_2$          | $\sigma_h$              | $\infty$ elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $D_{ig}$               | 2j + 1 | 2j + 1 | $1 + \sum_{l=1}^{l=j} 2\cos l\phi$                       | 2j + 1         | $(-1)^{j}$ $(-1)^{j+1}$ | $\left( \begin{array}{c} \alpha - \pm 1 \end{array} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $D_{ju}$               | 2j + 1 | 2j + 1 | $1+\sum_{l=1}^{l=j}2\cos l\phi$                          | -2j-1          | $(-1)^{j+1}$            | $\int \frac{d}{dt} = \frac{1}{2} \int \frac{d}{dt} \frac{d}{dt} = \frac{1}{2} \int \frac{d}{dt} $ |
| $D_{(j+\frac{1}{2})g}$ | 2j + 2 | -2j-2  | $\sum_{l=0}^{l=j+1} 2\cos\left(l+\frac{1}{2}\right)\phi$ | 2j+2           | 0                       | $\left( \right) \alpha = -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $D_{(j+\frac{1}{2})u}$ | 2j + 2 | -2j-2  | $\sum_{l=0}^{l=j+1} 2\cos\left(l+\frac{1}{2}\right)\phi$ | -2j-2          | 0                       | $\left.\right\rangle \alpha = -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| K <sub>h</sub>         | E      |        | $\infty  C^{oldsymbol{\phi}}_{\infty}$                   | S <sub>2</sub> | $\sigma_h$              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| $\mathscr{R}_2(K_h)$                                                                   | E             | R      | $\infty  C^{oldsymbol{\phi}}_{\infty}$                       | $S_2$    | $\infty  C^{\phi}_{\infty}  S_{2}$                                                                                                                                             | $\infty$ elements           |
|----------------------------------------------------------------------------------------|---------------|--------|--------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| $D_{jg}$                                                                               | 2j+1          | 2j + 1 | $1 + \sum_{l=1}^{l=j} 2\cos l\phi$                           | 2j + 1   | $1 + \sum_{l=0}^{l=j} 2\cos l\phi$<br>$1 - \sum_{l=1}^{l=j} 2\cos l\phi$<br>$\sum_{l=0}^{j+1} 2i\cos(l + \frac{1}{2})\phi$<br>$- \sum_{l=0}^{j+1} 2i\cos(l + \frac{1}{2})\phi$ |                             |
| $D_{ju}$                                                                               | 2 <i>j</i> +1 | 2j + 1 | $1 + \sum_{l=1}^{l=j} 2\cos l\phi$                           | -2j-1    | $1 - \sum_{l=1}^{l=j} 2\cos l\phi$                                                                                                                                             | $\int \alpha = +1$          |
| $D = \int D^+_{(j+\frac{1}{2})\alpha}$                                                 | 2j+2          | -2j-2  | $\sum_{l=0}^{l=j+1} 2\cos\left(l\!+\!\frac{1}{2}\right)\phi$ | 2i(j+1)  | $\sum_{l=0}^{j+1} 2\mathrm{i}\cos\left(l+rac{1}{2} ight)\phi$                                                                                                                 | $\left \right _{\alpha=-1}$ |
| $\left(D_{(j+\frac{1}{2})\alpha}^{-}\right)\left(D_{(j+\frac{1}{2})\alpha}^{-}\right)$ | 2j+2          | -2j-2  | $\sum_{l=0}^{l=j+1} 2\cos\left(l+\frac{1}{2}\right)\phi$     | -2i(j+1) | $-\sum_{l=0}^{j+1} 2i\cos(l+\frac{1}{2})\phi^{-1}$                                                                                                                             | $\int a = -1$               |
| K <sub>h</sub>                                                                         | E             |        | $\infty C^{\phi}_{\infty}$                                   | $S_2$    | $\infty C^{\phi}_{\infty} S_2$                                                                                                                                                 |                             |

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

#### 6. ASCENT AND DESCENT IN SYMMETRY

If the point group  $G_2$  is a subgroup of a point group  $G_1$ , the vector representations of  $G_2$  can always be related to those of  $G_1$  by a process of ascent and descent in symmetry (also known as induction and subduction) due to Frobenius (1898). Relations between the projective representations of  $G_1$  and  $G_2$  are in general, however, severely restricted, not only by differences in the multiplicators but also by the choice of representation group. Indeed for specific physical problems it may be advantageous to choose a particular representation group, and hence a particular set of projective representations, to facilitate the process of descent in symmetry.

To quote specific examples, the representation groups of  $O_h$  and  $D_{4h}$  are respectively of orders 192 and 128 and hence the projective representations of  $O_h$  cannot be subduced onto those of  $D_{4h}$  even though  $D_{4h}$  is a maximal subgroup of  $O_h$ . This is clearly because the multiplicator of  $D_{4h}$  is of greater order than that of  $O_h$ .

Further of the two representation groups of  $D_2$ , only  $\mathscr{R}_1(D_2)$  is a subgroup of  $\mathscr{R}(T)$  and hence there is clearly some advantage to be gained in dealing with the projective representations of  $D_2$  derived from  $\mathscr{R}_1(D_2)$  rather than those derived from  $\mathscr{R}_2(D_2)$  when descent from the tetrahedral group is of interest.

Descents in symmetry are sometimes possible when the order of the multiplicator decreases from  $G_1$  to  $G_2$ . For example, the multiplicator of  $O_h$  is of order 4 while those of O,  $T_d$ ,  $T_h$  and  $D_{3d}$ are of order 2. However, only from  $\mathscr{R}_1(O_h)$  and  $\mathscr{R}_2(O_h)$  is a descent possible to a representation group of each of the four groups.

The only descents to maximal subgroups presented are those to maximal subgroups which are themselves representation groups of a point group. This includes cases where the multiplicator is necessarily trivial so that formally the point group is its own representation group. The correlations obey all of Frobenius's rules (1898): only descents have therefore been presented in the interests of economy of space. The consideration of different representation groups for a group G leads to more complete and detailed results than those obtainable by Harter (1969).

| $\mathscr{R}_1(C_{4nh})$ | $C_{4n}$                 | $\mathscr{R}_1(C_{(4n-2)h})$ | $C_{4n-2}$         | $C_{(2n-1)h}$                                             | $\mathscr{R}_1(C_{2\hbar})$ |
|--------------------------|--------------------------|------------------------------|--------------------|-----------------------------------------------------------|-----------------------------|
| $A_{g}$                  | A                        | $A_g$                        | A                  | A'                                                        | $A_{g}$                     |
| $A_u$                    | A                        | $A_u$                        | A                  | A'                                                        | $A_{u}$                     |
| $B_{g}$                  | B                        | $B_{g}$                      | В                  | A"                                                        | $B_{g}$                     |
| $B_u$                    | B                        | $B_u$                        | В                  | <i>A</i> ″                                                | $B_u$                       |
| $E_{lg}$                 | $E_l$                    | $E_{lg}$                     | $E_l$              | $\int l  \mathrm{odd} : E_{n-\frac{1}{2}l-\frac{1}{2}}''$ | $2B_g$                      |
| $E_{lu}$                 | $E_l$                    | $L_{lg}$                     | $D_l$              | $l \text{ even: } \vec{E}_{1l}$                           | $2A_g$                      |
| $E_{\frac{1}{2}n\alpha}$ | $E_{\frac{1}{2}n\alpha}$ | $E_{lu}$                     | $E_{i}$            | $\int l  \mathrm{odd} : E_{n-\frac{1}{2}l-\frac{1}{2}}''$ | $2B_u$                      |
| $E_{n\alpha}$            | A + B                    |                              | •                  | $l even: E'_{1l}$                                         | $2A_u$                      |
| $G_{l\alpha}$            | $E_l + E_{2n-l}$         | $E_{n\alpha}$                | A + B              | A' + A''                                                  | $E_{1\alpha}$               |
|                          |                          | $G_{l\alpha}$                | $E_l + E_{2n-l-1}$ | $E_l' + E_l''$                                            | $2E_{1\alpha}$              |

Table 4. Correlation of the irreducible representations of the  $C_{2nh}$  groups with those of their maximal subgroups

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

THE ROYAL A SOCIETY

**PHILOSOPHICAL TRANSACTIONS** 

|                                       | TABLE 4 (cont.)                                                            |                                  |                                    |                                        |                                                                           |  |  |  |
|---------------------------------------|----------------------------------------------------------------------------|----------------------------------|------------------------------------|----------------------------------------|---------------------------------------------------------------------------|--|--|--|
| $\mathscr{R}_{2}\left(C_{4nh} ight)$  | C_4n                                                                       | $\mathscr{R}_2(C_{(4n-2)\hbar})$ | $C_{4n-2}$                         | $C_{(2n-1)h}$                          | $\mathscr{R}_2(C_{2n})$                                                   |  |  |  |
| $A_g$                                 | A                                                                          | $A_{g}$                          | A                                  | A'                                     | $A_{g}$                                                                   |  |  |  |
| $A_u$                                 | A                                                                          | $A_u$                            | A                                  | A'                                     | $A_u$                                                                     |  |  |  |
| $B_{g}$                               | A                                                                          | $B_{g}$                          | A                                  | A'                                     | $B_{g}$                                                                   |  |  |  |
| $B_u$                                 | A                                                                          | $B_u$                            | A                                  | A'                                     | $B_{u}$                                                                   |  |  |  |
| $l \neq n; E_{lg}$ $l \neq n; E_{lu}$ | $\begin{bmatrix} E_{2n- 2n-2l } \\ E_{2n- 2n-2l } \\ \vdots \end{bmatrix}$ | $E_{lg}$                         | $E_{2n-1-\lfloor 2n-2l-1 \rfloor}$ | $E_{n-\frac{1}{2}- n-\frac{1}{2}-l }'$ | $\begin{cases} l \text{ odd: } 2B_g \\ l \text{ even: } 2A_g \end{cases}$ |  |  |  |
| $E_{ng} \ E_{nu}$                     | 2B<br>2B                                                                   | $E_{lu}$                         | $E_{2n-1- 2n-2l-1 }$               | $E_{n-\frac{1}{2}- n-\frac{1}{2}-l }'$ | $\begin{cases} l \text{ odd: } 2B_u \\ l \text{ even: } 2A_u \end{cases}$ |  |  |  |
| $G_{l\alpha}$                         | $  2E_{2l-1}  $                                                            | $E_{lpha} \ G_{l lpha}$          | $\frac{2B}{2E_{2l-1}}$             | $2A'' \ 2E''_{\iota}$                  | $E_{lpha} \ 2E_{lpha}$                                                    |  |  |  |

Table 5. Correlation of the irreducible representations of the representation groups of the dihedral groups  $D_{2n}$  with those of their maximal subgroups

| $\mathscr{R}_1(D_{2n})$                                                                                    | $C_{2n}$                                                                                          | $n \text{ odd } (\neq 1)$ $\mathscr{R}_1(D_2)$                                                                                                                                |                                                                                                                  | n even<br>$\mathscr{R}_1(D_n)$                                                      |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| $\begin{matrix} A_1\\ A_2\\ B_1\\ B_2\\ l\neq \frac{1}{2}n; E_l \end{matrix}$                              | $\begin{array}{c} A\\ A\\ A\\ A\\ E_{n-\lfloor n-2l\rfloor}\end{array}$                           | $A_1$ $A_2$ $B_1$ $B_2$ $\begin{cases} l \text{ odd: } B_1 + B_2 \\ l \text{ even: } A_1 + A_2 \end{cases}$                                                                   | $\begin{array}{c} A_1\\ A_2\\ A_1\\ A_2\\ E_{\frac{1}{2}n}. \end{array}$                                         | $-\left \frac{1}{2}n-l\right $                                                      |
| $E_{\frac{1}{2}n}$ or $E_{(\frac{1}{2}n+\frac{1}{2})\alpha}$                                               | 2B                                                                                                | E <sub>1a</sub>                                                                                                                                                               | <i>B</i> <sub>1</sub> +                                                                                          | - B <sub>2</sub>                                                                    |
| $l \neq \frac{1}{2}n + \frac{1}{2}; E_{l\alpha}$                                                           | $E_{n-\lfloor n-(2l-1)\rfloor}$                                                                   | $E_{1\alpha}$                                                                                                                                                                 | $E_{\{n-1\}}$                                                                                                    | $+\frac{1}{2}- n+\frac{1}{2}-l \}\alpha$                                            |
| $\mathscr{R}_2(D_{2n})$                                                                                    | C <sub>2n</sub>                                                                                   | $n \text{ odd} D_n$                                                                                                                                                           | $n$ even $\mathscr{R}_2(D_n)$                                                                                    | $n \operatorname{odd} (\neq 1)$ $\mathscr{R}_2(D_2)$                                |
| $\begin{array}{c}A_1\\A_2\\B_1\\B_2\end{array}$                                                            | A<br>A<br>A<br>A                                                                                  | $\begin{array}{c}A_1\\A_2\\A_1\\A_2\end{array}$                                                                                                                               | $\begin{array}{c}A_1\\A_2\\A_1\\A_2\end{array}$                                                                  | $\begin{array}{c}A_1\\A_2\\B_1\\B_2\end{array}$                                     |
| $l \neq \frac{1}{2}n; E_l$                                                                                 | $E_{n-\lfloor n-2l \rfloor}$                                                                      | $E_{\frac{1}{2}n- \frac{1}{2}n-2l \bmod n }$                                                                                                                                  | $E_{\frac{1}{2}n- \frac{1}{2}n-l }$                                                                              | $\begin{cases} l \text{ odd: } B_1 + B_2 \\ l \text{ even: } A_1 + A_2 \end{cases}$ |
| <i>n</i> even; $E_{\frac{1}{2}n}$                                                                          | 2B                                                                                                |                                                                                                                                                                               | $B_1 + B_2$                                                                                                      |                                                                                     |
| $l \neq \frac{1}{2}n + \frac{1}{2}; E_{l\alpha}$<br>n odd; $E_{(\frac{1}{2}n + \frac{1}{2})}$              | $\begin{vmatrix} E_{n- n-(2l-1) } \\ E_{n- n-(2l-1) } \end{vmatrix}$                              | $ \begin{array}{c} E_{\frac{1}{2}n -  \frac{1}{2}n - (2l-1) \mod n} \\ A_1 + A_2 \end{array} $                                                                                | $E_{\{n+\frac{1}{2}- n+\frac{1}{2}-l \}\alpha}$                                                                  | $E_{1lpha} E_{1lpha}$                                                               |
| $\mathscr{R}_{3}(D_{4n})$                                                                                  | -2) C <sub>4n-2</sub>                                                                             | $D_{2n-1}$                                                                                                                                                                    |                                                                                                                  | $\begin{array}{c} n \neq 1 \\ \mathscr{R}_2(D_2) \end{array}$                       |
| -<br>-<br>-<br>-                                                                                           | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                            | $\begin{array}{c} A_1 \\ A_2 \\ A_2 \\ A_1 \\ E_{n-\frac{1}{2}- n-l-\frac{1}{2} } \\ A_1 + A_2 \\ 2E_{n-\frac{1}{2}- n-\frac{1}{2}-2l } \\ \mathscr{R}_1(D_{2n}) \end{array}$ | $\mathcal{A}_1$<br>$B_1$<br>$A_2$<br>$B_2$<br>$\{l 	ext{ or } \{l 	ext{ or } E_1, \\ 2E$<br>$\mathscr{R}_2(D_2)$ | dd: $A_2 + B_2$<br>ven: $A_1 + B_1$                                                 |
| $\begin{array}{c} A_{1} \\ A_{2} \\ B_{1} \\ B_{2} \\ l \neq n; E_{l} \\ E_{n} \\ G_{l\alpha} \end{array}$ | $\begin{array}{c} A \\ A \\ A \\ A \\ A \\ E_{2n- 2n-2l } \\ 2B \\ 2E_{2n- 2n-2l+1 } \end{array}$ | $\begin{array}{c} A_{1} \\ A_{2} \\ A_{2} \\ A_{1} \\ E_{n- n-l } \\ B_{1}+B_{2} \\ 2E_{l\alpha} \end{array}$                                                                 | $\begin{array}{c} A_1\\ A_2\\ A_1\\ A_2\\ E_{n- n-}\\ B_1+B\\ 2E_{l\alpha}\end{array}$                           | 1                                                                                   |

#### Table 6. Correlation of the irreducible representations of the representation groups of the $D_{2nh}$ groups with those of their maximal subgroups

| (110 D)                                                                                                                                                                                       | anh groups have no repr                                                                                                                                                                                                                                                                                                                                                                                       | escintation groups as maxim                                                                                                                                                                  | ar subgroups.)                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathscr{R}_1(D_{(4n+2)\hbar})$                                                                                                                                                              | $\mathscr{R}(D_{2n})$                                                                                                                                                                                                                                                                                                                                                                                         | $\mathscr{R}_2(D_{(4n+2)h})$                                                                                                                                                                 | $\mathscr{R}(D_{2\hbar})$                                                                                                                                                                                                                                                                                      |
| $\begin{array}{c} \mathscr{R}_{1}(D_{(4n+2)h}) \\ \\ A_{1g} \\ A_{1u} \\ A_{2g} \\ A_{2u} \\ B_{1g} \\ B_{1u} \\ B_{2g} \\ B_{2u} \\ E_{lg} \\ E_{lg} \\ E_{lu} \end{array}$                  | $\begin{array}{c} \mathscr{R}(D_{2n}) \\ \hline \\ A_{1g} \\ A_{1u} \\ A_{2g} \\ A_{2u} \\ B_{1g} \\ B_{1g} \\ B_{2g} \\ B_{2g} \\ B_{2u} \\ \left\{ l \text{ odd: } B_{1g} + B_{2g} \\ l \text{ even: } A_{1g} + A_{2g} \\ \left\{ l \text{ odd: } B_{1u} + B_{2u} \\ l \text{ even: } A_{1u} + A_{2u} \\ \left\{ l \text{ odd: } E_{1g} \right\} \\ \left\{ l \text{ odd: } E_{1g} \right\} \\ \end{array}$ | $\begin{array}{c} A_{1g} \\ A_{1u} \\ A_{2g} \\ A_{2u} \\ B_{1g} \\ B_{1u} \\ B_{2g} \\ B_{2u} \\ E_{ig} \\ E_{lu} \\ E_{lu} \\ E_{la} \end{array}$                                          | $\begin{array}{c} \mathscr{R}(D_{2h}) \\ \hline \\ A_{1g} \\ A_{1u} \\ A_{2g} \\ A_{2u} \\ B_{1g} \\ B_{1u} \\ B_{2g} \\ B_{2u} \\ \left\{ l \text{ odd: } B_{1u} + B_{2u} \\ l \text{ even: } A_{1g} + A_{2g} \\ l \text{ even: } A_{1g} + B_{2g} \\ l \text{ even: } A_{1u} + A_{2u} \\ E_{1q} \end{array} $ |
| $E_{l\alpha}$ $E_{1\beta}$ $E_{2\beta}$ $G_{l\beta}$ $E_{1\gamma}$ $E_{2\gamma}$                                                                                                              | $\begin{cases} l \text{ odd: } E_{1\alpha} \\ l \text{ even: } E_{2\alpha} \\ E_{1\beta} \\ E_{2\beta} \\ \int l \text{ odd: } 2E_{2\beta} \\ l \text{ even: } 2E_{1\beta} \\ E_{1\gamma} \\ E_{2\gamma} \end{cases}$                                                                                                                                                                                         | $E_{1\alpha}$ $E_{2\alpha}$ $G_{l\alpha}$ $E_{1\beta}$ $E_{2\beta}$ $G_{l\beta}$ $E_{1\gamma}$ $E_{2\gamma}$                                                                                 | $\begin{array}{c} E_{1\alpha} \\ E_{2\alpha} \\ E_{1\alpha} + E_{2\alpha} \\ E_{1\beta} \\ E_{2\beta} \\ E_{1\beta} + E_{2\beta} \\ E_{1\beta} + E_{2\gamma} \end{array}$                                                                                                                                      |
| $G_{l\gamma}^{2\gamma}$ $G_{l\alpha\beta}$ $G_{\alpha\gamma}$ $G_{l\alpha\gamma}$ $G_{\gamma\beta}$ $G_{l\gamma\beta}$ $E_{1lpha\beta\gamma}$ $E_{2lpha\beta\gamma}$ $G_{l\alpha\beta\gamma}$ | $\begin{bmatrix} E_{1\gamma}^{\prime} + E_{2\gamma} \\ G_{1\alpha\beta} \\ G_{\alpha\gamma} \\ G_{\alpha\gamma} \\ G_{\gamma\beta} \\ G_{\gamma\beta} \\ E_{1\alpha\beta\gamma} \\ E_{2\alpha\beta\gamma} \\ E_{1\alpha\beta\gamma} + E_{2\alpha\beta\gamma} \end{bmatrix}$                                                                                                                                   | $G_{l \gamma}^{z \gamma} G_{l lpha eta} G_{l lpha eta} G_{l lpha eta} G_{l lpha eta} G_{l lpha \gamma} G_{l lpha \gamma} G_{l lpha \gamma} G_{l \gamma eta} G_{l \gamma eta} G_{l lpha eta}$ | $E_{1\gamma} + E_{2\gamma}$ $G_{1\alpha\beta}$ $E_{\alpha\gamma}$ $2E_{\alpha\gamma}$ $E_{\gamma\beta}$ $2E_{\gamma\beta}$ $\begin{cases} l \text{ odd: } E_{1\alpha\beta\gamma}$ $\langle l \text{ even: } E_{2\alpha\beta\gamma}$                                                                            |

(The  $D_{4nh}$  groups have no representation groups as maximal subgroups.)

# TABLE 7. CORRELATION OF THE IRREDUCIBLE REPRESENTATIONS OF THE REPRESENTATION GROUPS OF THE TETRAHEDRAL GROUPS WITH THEIR MAXIMAL SUBGROUPS

(The two representation groups of the regular tetrahedral group  $(T_d)$  are isomorphic with those of the octahedral rotation group (O), q.v. The tables for  $\mathscr{R}_1(O)$  and  $\mathscr{R}_2(O)$  should therefore be used, with the corresponding changes in the subgroups, viz.  $\mathscr{R}(D_4) \to \mathscr{R}(D_{2d})$  and  $D_3 \to C_{3v}$ .)

|                                  |                   | $\mathscr{R}(T)$                   | $\mathscr{R}_1(D_2)$                              |                                   | $C_3$              |              |
|----------------------------------|-------------------|------------------------------------|---------------------------------------------------|-----------------------------------|--------------------|--------------|
|                                  |                   | A                                  |                                                   |                                   | A                  | -            |
|                                  |                   | $egin{array}{c} E \ T \end{array}$ | $\begin{array}{c} 2A_1\\ A_2+B_1+B_2 \end{array}$ |                                   | E<br>A+E           |              |
|                                  |                   | $E_{\frac{1}{2}}$                  | $E_{1\alpha}$                                     |                                   | E                  |              |
|                                  |                   | $G_{\frac{3}{2}}$                  | $2\tilde{E}_{1lpha}$                              |                                   | 2A + E             |              |
| $\mathscr{R}_{1}(T_h)$           | $\mathscr{R}(T)$  |                                    | $S_6$                                             | $\mathscr{R}_2(T_h)$              | $\mathscr{R}(T)$   | $S_6$        |
| $A_g$                            | A                 |                                    | $A_g$                                             | $A_g$                             | A                  | $A_g$        |
| $A_u$                            | A                 |                                    | $A_u$                                             | $A_u$                             |                    | $A_g$        |
| $E_{g}$                          | E                 |                                    | $E_{g}$                                           | $E_{g}$                           |                    | $E_g$        |
| $E_u$                            | E                 |                                    | $E_u$                                             | $E_u$                             | E                  | $E_{g}$      |
| $T_{g}^{"}$                      | T                 |                                    | $A_g + E_g$                                       | $T_{g}$                           |                    | $A_g + E_g$  |
| $T_u$                            | T                 |                                    | $A_u + E_u$                                       | $T_u$                             |                    | $A_g + E_g$  |
| $E_{\frac{1}{2}a}$               | $E_{\frac{1}{2}}$ |                                    | $E_{g}$                                           | $G_{\sigma}$                      | $2E_{\frac{1}{2}}$ | $2E_u$       |
| $E_{\frac{1}{2}u}$               | $E_{\frac{1}{2}}$ |                                    | $E_u$                                             | $G'_{\alpha}$                     | $G_{\frac{3}{2}}$  | $2A_u + E_u$ |
| $G_{\frac{3}{2}g}^{\frac{2}{3}}$ | $G_{\frac{3}{2}}$ |                                    | $2\ddot{A}_g + E_g$                               | $G_{\alpha}^{\widetilde{\prime}}$ |                    | $2A_u + E_u$ |
| $G_{\frac{3}{2}u}^{2^{3}}$       | $G_{\frac{3}{2}}$ |                                    | $2A_u + E_u$                                      | ű                                 | · 2                |              |

|                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\mathscr{R}_2(T_h)$     | $\begin{array}{c} A_{a} \\ A_{a} \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $  \mathscr{R}_1(T_h)$   | $\begin{array}{c} A_{g_{a}}\\ B_{g_{a}}\\ B_{g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| .0UPS $\Re_2(0).)$                                                                                                                                                                                                                                                                                                                 |                                       | E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\mathscr{R}_{4}(O_{h})$ | $A_{1a}^{A_{1a}} = B_{2a}^{A_{1a}} = B_{2a}^{A_{1a}} = B_{2a}^{A_{1a}} = B_{2a}^{A_{2a}} = B_{2a}^{A_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SENTATION GR<br>3ROUPS<br>ups $\mathscr{R}_1(O)$ and $ئ$                                                                                                                                                                                                                                                                           | $D_3$                                 | $A_1 \\ E_2 \\ E_2 + E \\ A_1 + E \\ A_1 + A_2 + E \\ A_1 + A_2 + E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\mathscr{R}_1(D_{3d})$  | $\begin{array}{c} A_1\\ B_1\\ B_2\\ B_2\\ B_2\\ E_3\\ E_3\\ E_3\\ B_1+E_1\\ B_1+E_1\\ B_1+E_2\\ B_2+E_1\\ B_1+B_2+E_1\\ A_1+A_2+E_1\\ B_1+B_2+E_1\\ B_1+B_2+E_3\\ E_2\\ E_3\\ E_3\\ E_3\\ E_3\\ E_3\\ E_3\\ E_3\\ E_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| HE REPRE<br>MAL SUBC<br>orphic gro                                                                                                                                                                                                                                                                                                 | $\mathscr{R}_3(D_4)$                  | $egin{array}{c} A_1 \ B_2 \ A_1 \ A_1 \ A_1 \ A_1 \ A_1 \ A_2 \ A_1 \ B_1 \ B_1 \ E_1 \ B_1 \ E_2 \ B_2 \ $ | $\mathscr{R}_1(T_h)$     | $\begin{array}{c} A_{g_{g_{u}}}\\ A_{g_{g_{u}}}\\ B_{g_{u}}\\ B_{u}\\ B_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ONS OF TI<br>IEIR MAXI<br>or the isom                                                                                                                                                                                                                                                                                              | $\mathscr{R}_{3}$                     | E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\mathscr{R}_3(O_h)$     | $\begin{array}{c} A_{1u} \\ A_{2u} \\ A_{2u} \\ B_{2u} \\ B_{2u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TABLE 8. CORRELATION OF THE IRREDUCIBLE REPRESENTATIONS OF THE REPRESENTATION GROUPS<br>OF THE OCTAHEDRAL GROUPS WITH THOSE OF THEIR MAXIMAL SUBGROUPS<br>(Entries for the subgroups $\mathscr{R}_1(T_a)$ and $\mathscr{R}_2(T_a)$ are identical with those for the isomorphic groups $\mathscr{R}_1(0)$ and $\mathscr{R}_2(0)$ .) | $ \mathcal{R}_2(0)  = \mathcal{R}(T)$ | $egin{array}{c c} A_1 & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\mathscr{R}_2(D_{3d})$  | $\begin{array}{c} A_1\\ B_1\\ A_2\\ B_1\\ A_2\\ E_2\\ E_2\\ E_2\\ B_1+E_1\\ B_1+E_1\\ B_1+E_1\\ B_1+E_2\\ B_1+E_2\\ B_1+E_2\\ B_1+E_2\\ B_1+E_2\\ B_1+E_2\\ E_2\\ E_2\\ E_2\\ E_2\\ E_2\\ E_2\\ E_2\\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| EDUCIBLE<br>KOUPS WIJ $T_d$ ) are iden                                                                                                                                                                                                                                                                                             | $\mathscr{R}_{2}$                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\mathscr{R}_1(T_h)$     | ана<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совении<br>Совени<br>Совени<br>Совени<br>Совени<br>Совении<br>Совени<br>Совени<br>Совени<br>Совени<br>Совени<br>Совени<br>Совени<br>Совени<br>Совени<br>Совени<br>Совени<br>Совени<br>Совени<br>Совени<br>С<br>Совени<br>Со                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| F THE IRR<br>EDRAL GH<br>$_{1}^{()}$ and $\mathscr{R}_{2}^{()}$                                                                                                                                                                                                                                                                    | $\mathscr{R}_1(D_4)$                  | $\begin{array}{c} A_1\\ B_2\\ A_1+B_2\\ A_2+E\\ B_1+E\\ E_{1x}\\ E_{1x}+E_{2x}\\ E_{1x}+E_{2x} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\mathscr{R}_2(0)$       | $ \begin{array}{cccc} A_1 & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LATION O<br>IE OCTAH<br>$\mathfrak{R}_1(T_i$                                                                                                                                                                                                                                                                                       | ·                                     | ${}^{F_{1}}_{F_{2}}{}^{F_{1}}_{F_{2}}{}^{F_{1}}_{F_{2}}{}^{F_{1}}_{F_{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\mathscr{R}_2(O_h)$     | $A_{1u} = B_{2u} = B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| E 8. CORRELA<br>OF THE for the subgroup                                                                                                                                                                                                                                                                                            | $\mathcal{O}$ ) $\mathcal{R}(T)$      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\mathscr{R}_3(D_{3d})$  | $\begin{array}{c} A_1\\ B_1\\ B_2\\ B_2\\ E_2\\ E_2\\ E_3\\ B_1+E_1\\ B_1+E_1\\ B_1+E_1\\ B_1+E_1\\ B_1+E_1\\ B_1+E_1\\ E_2\\ E_3\\ E_3\\ E_3\\ E_1\\ B_1+B_2+E_1\\ B_2+B_2+E_1\\ B_1+B_2+E_1\\ B_1+B_2+E_1\\ B_1+B_2+E_1\\ B_1+B_2+E_1\\ B_1+B_2+E_1\\ B_1+B_2+E_1\\ B_1+B_2+E_1\\ B_2+E_1\\ B_1+B_2+E_1\\ B_2+E_1\\ B_2+E_1\\ B_1+B_2+E_1\\ B_2+E_1\\ B_2+E_1\\ B_2+E_1\\ B_1+B_2+E_1\\ B_2+E_1\\ B_2+E_1\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TABI<br>(Entrice                                                                                                                                                                                                                                                                                                                   | $\mathscr{R}_1(0)$                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\mathscr{R}_1(T_h)$     | $ \overset{\mathcal{A}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{{}}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{{}}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{{}}}{\overset{\mathfrak{G}}{\overset{\mathfrak{G}}{{}}}{{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\mathscr{R}_1(0)$       | $ \begin{array}{c} \mathcal{A} \\ \mathcal$ |
|                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\mathscr{R}_1(O_h)$     | $\begin{array}{c} A_{1s}^{1}\\ A_{2s}^{2}\\ A_{2u}^{2}\\ B_{2u}^{2}\\ B_{2u}^{2}\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

18

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

# TABLE 9. CORRELATION OF THE IRREDUCIBLE REPRESENTATIONS OF THE REPRESENTATION GROUPS OF THE ICOSAHEDRAL GROUPS WITH THOSE OF THEIR MAXIMAL SUBGROUPS

| $\mathscr{R}(I)$                                                                                                                                                                                                                                                                          | ) $\mathscr{R}(T)$                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                               | $D_5$                                                                                                                                                                     |                                                                                                                                                  | D <sub>3</sub>                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A<br>T<br>T<br>G<br>H<br>E<br>E<br>G<br>G<br>I<br>1                                                                                                                                                                                                                                       | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                 | $\begin{array}{c} A_{1} \\ A_{2} + E \\ A_{2} + E \\ E_{1} + E \\ A_{1} + E \\ E_{2} \\ E_{1} \\ E_{1} + E \\ A_{1} + A \end{array}$                                                                                                                                                                                                                                                                                                          | $E_{1}^{2} + E_{2}$                                                                                                                                                       |                                                                                                                                                  | $A_1$ $A_2 + E$ $A_2 + E$ $A_1 + A_2 + E$ $A_1 + 2E$ $E$ $E$ $A_1 + A_2 + E$ $A_1 + A_2 + E$ $A_1 + A_2 + E$ $A_1 + A_2 + 2E$                                                                                  |
| $\mathscr{R}_1(I_h)$                                                                                                                                                                                                                                                                      | $\mathscr{R}(I)$                                                                                                                                                                                       | $\mathscr{R}_1(T_h)$                                                                                                                                                                                                                                                                                                                                                                                                                          | $\mathscr{R}_2(I_h)$                                                                                                                                                      | $\mathscr{R}(I)$                                                                                                                                 | $\mathscr{R}_2(T_h)$                                                                                                                                                                                           |
| $\begin{array}{c} A_{g} \\ A_{u} \\ T_{1g} \\ T_{1u} \\ T_{2g} \\ T_{2u} \\ G_{g} \\ G_{u} \\ H_{g} \\ H_{u} \\ E_{\frac{1}{2}g} \\ E_{\frac{1}{2}u} \\ E_{\frac{2}{3}g} \\ E_{\frac{3}{2}u} \\ G_{\frac{3}{2}g} \\ G_{\frac{3}{2}u} \\ I_{\frac{3}{2}g} \\ I_{\frac{3}{2}u} \end{array}$ | $\begin{array}{c} A \\ A \\ T_{1} \\ T_{2} \\ T_{2} \\ G \\ G \\ H \\ H \\ E_{\frac{1}{2}} \\ E_{\frac{3}{2}} \\ E_{\frac{3}{2}} \\ G_{\frac{3}{2}} \\ I_{\frac{3}{2}} \\ I_{\frac{5}{2}} \end{array}$ | $\begin{array}{c} A_{g} \\ A_{u} \\ T_{g} \\ T_{u} \\ T_{g} \\ T_{h} \\ A_{g} + T_{g} \\ A_{u} + T_{u} \\ E_{g} + T_{g} \\ E_{u} + T_{u} \\ E_{\frac{1}{2}g} \\ E_{\frac{1}{2}u} \\ E_{\frac{1}{2}g} \\ E_{\frac{1}{2}u} \\ E_{\frac{1}{2}g} \\ E_{\frac{1}{2}u} \\ E_{\frac{1}{2}g} \\ E_{\frac{1}{2}u} \\ E_{\frac{1}{2}g} + G_{\frac{3}{2}g} \\ E_{\frac{1}{2}u} + G_{\frac{3}{2}u} \\ E_{\frac{1}{2}u} + G_{\frac{3}{2}u} \\ \end{array}$ | $\begin{array}{c} A_{g} \\ A_{u} \\ T_{1g} \\ T_{2g} \\ T_{2u} \\ G_{g} \\ G_{u} \\ H_{g} \\ H_{u} \\ G_{1\alpha} \\ G_{2\alpha} \\ K_{\alpha} \\ O_{\alpha} \end{array}$ | $\begin{array}{c} A \\ A \\ T_{1} \\ T_{2} \\ T_{2} \\ G \\ G \\ H \\ H \\ 2E_{\frac{1}{2}} \\ 2G_{\frac{3}{2}} \\ 2I_{\frac{5}{2}} \end{array}$ | $\begin{array}{c} A_g \\ A_u \\ T_g \\ T_u \\ T_g \\ T_u \\ A_g + T_g \\ A_u + T_u \\ E_g + T_g \\ E_u + T_u \\ G_\alpha \\ G_\alpha \\ G_\alpha \\ G_\alpha \\ G_\alpha + G'_\alpha + G''_\alpha \end{array}$ |

Table 10. Correlation of the irreducible representations of the representation groups of the spherical rotation-reflection group  $K_h$  with those of its maximal subgroups

| $\mathscr{R}_1(K_h)$              | $\mathscr{R}_1(I_h)$                          | $\mathscr{R}_2(K_h)$    | $\mathscr{R}_2(I_h)$       |
|-----------------------------------|-----------------------------------------------|-------------------------|----------------------------|
| $D_{0g}$                          | $A_g$                                         | $D_{0g}$                | $A_{g}$                    |
| $D_{0u}$                          | $A_u$                                         | $D_{0u}$                | $A_u$                      |
| $D_{1g}$                          | $T_{1g}$                                      | $D_{1g}$                | $T_{1q}$                   |
| $D_{1u}$                          | $T_{1u}$                                      | $D_{1u}$                | $T_{1u}$                   |
| $D_{2g}$                          | $H_{g}$                                       | $D_{2g}$                | $H_g$                      |
| $D_{2u}^{2v}$                     | $H_u$                                         | $D_{2u}$                | $H_u$                      |
| $D_{3g}$                          | $T_{2g} + G_g$                                | $D_{3g}^{}$             | $T_{2g} + G_g$             |
| $D_{3u}^{ss}$                     | $T_{2u} + G_u$                                | $D_{3u}$                | $T_{2u} + G_u$             |
| •••••••                           | •••••                                         | ••••••                  |                            |
| $D_{\frac{1}{2}g}$                | $E_{\frac{1}{2}g}$                            | $D_{\frac{1}{2}\alpha}$ | $G_{1\alpha}$              |
| $D_{\frac{1}{2}u}$                | $E_{\frac{1}{2}u}$                            | $D_{\frac{3}{2}\alpha}$ | $K_{\alpha}$               |
| $D_{\frac{3}{2}g}$                | $G_{\frac{3}{2}g}$                            | $D_{\frac{5}{2}\alpha}$ | $O_{\alpha}$               |
| $D_{\frac{3}{2}u}$                | $G_{\frac{3}{2}u}$                            | $D_{\frac{7}{2}\alpha}$ | $G_{2\alpha} + O_{\alpha}$ |
| $D_{\frac{5}{2}g}$                | $I_{\frac{5}{2}g}$                            |                         |                            |
| $D_{\frac{5}{2}u}$                | $I_{\frac{5}{2}u}$                            |                         |                            |
| $D_{\frac{7}{2}g}$                | $\tilde{E}_{\frac{7}{2}g} + I_{\frac{5}{2}g}$ |                         |                            |
| $D_{\frac{7}{2}u}^{\frac{2}{2}v}$ | $E_{\frac{7}{2}u} + I_{\frac{5}{2}u}$         |                         |                            |
|                                   |                                               |                         |                            |

#### 7. The symmetrized powers of projective representations

The direct product of projective representations has been considered by Rudra (1964) and corrected by Harter (1969). However, the resulting formulae are unwieldy because by not involving the actual representation groups they require a knowledge of the large numbers of factor systems of the projective representations and the formation of lengthy products of these.

The use of the standard formulae for vector representations in the representation group, however, enables the calculation to be performed for projective representations without reference to factor systems. Further, there are no complications or need for special theories in the calculation of the symmetrized powers of projective representations, which do not appear to have been considered hitherto. The cases of particular physical interest are those of the symmetrized squares and cubes which are used in calculating the expectation values of real and imaginary operators as well as in applying the Landau–Lifschitz theory of phase transitions. The results may be found on pages 134–148 of a thesis by one of us (Green 1976). The symmetrized powers of the vector representations of the representation groups are the same as those for the point groups and hence may be found in the papers of Jahn & Teller (1937) and Boyle (1972).

The fact that the powers of any representation of a group must be symmetrizable provides convincing proof of errors in the underived tables of projective representations published by Janssen (1973). By deducing the representation group from the projective representations published one can, by comparison with our tables, deduce the characters for those elements of the representation group which do not map onto G and hence perform a rigorous symmetrization – usually the symmetrization of the square is sufficient to reveal any discrepancy. In this way the characters of magnitude 2i in the projective representations  $\Gamma_{13}$  and  $\Gamma_{21}$  of  $D_{2h}$  were found to be actually 2 while the 2 in  $\Gamma_{15}$  should be 2i. Döring's (1956) and Hurley's (1966) projective representations for  $D_{2h}$  were similarly wrong since their projective representations only contain real characters.

The symmetrized powers of projective representations differ considerably according to the representation group chosen. However, in physical problems such as those to be discussed in the next two sections, there will always be one choice for which the set of projective characters is physically relevant *without modification* even though there may be phase factors in the gauge transformation. Hence by identifying this choice the above tables can be used to solve any given physical problem requiring symmetrized squares or cubes.

#### 8. Applications

#### 8.1 Derivation of the double-valued representations of the point groups

Projective representations may be used to find the double-valued representations of a group, irrespective of whether the multiplicator is of order 2 or not. It should be emphasized that whereas the representation group is the extension of M by G, the double group, G', is the extension of  $C'_1$  by G where  $C'_1$  is the group consisting of the identity and the element, R, which reverses the sign of the spin functions for systems with an odd number of electrons. The isomorphism of an  $\mathscr{R}(G)$  with G' is therefore inherent when M is of order 2 and G is a non-Abelian point group. A certain class of representations of  $\mathscr{R}(G)$ , which corresponds to a class of projective representations of G, can always be modified so that they provide the double-valued representations of G and, further, these unique double-valued representations can be obtained from

any of the different sets of projective representations corresponding to representation groups. The relation of double-valued representations to projective representations was first discussed by Weyl (1931) and subsequently developed by Hurley (1966).

The double-valued representations of a group G' are defined such that

$$\delta(Rg_i) = -\delta(g_i),$$

where R commutes with all elements  $g_i$  of G'. This law is also obeyed for that class  $\alpha$  of representations of  $\mathscr{R}(G)$  for which the representative matrices

 $\Delta(m_{\alpha} r_i) = -\Delta(r_i)$ 

where  $m_{\alpha}$  is an element of the multiplicator, since by projection into G, both  $\pi(m_{\alpha}r_i) = g_i$  and  $\pi(r_i) = g_i$  and, in general,  $\Delta(r_i) = \phi \delta(g_i)$ , where  $\phi$  is a phase factor to be determined. The double-valued representations are thus identified by the class  $\alpha$  of representations of  $\mathscr{R}(G)$  and their character systems can be determined once the phase factor (known as a gauge transformation in this context) has been found by comparing the relationships between the generating matrices  $\{P, Q\}$  which hold for the group  $\mathscr{R}(G)$  with those between the generating matrices  $\{A, B\}$  which hold for the double-valued representations of the group G'. This will now be illustrated in the case of the dihedral group  $G = D_4$ :

| $D'_{4}$ $A^{4} = -E$ $B^{2} = -E$ $BA = -A^{3}B$                         | $\mathcal{R}_1(D_4)$ $P^4 = \alpha E$ $Q^2 = \alpha E$ $QP = \alpha P^3 Q$ | $\mathcal{R}_2(D_4)$<br>$P^4 = lpha E$<br>$Q^2 = E$<br>$QP = lpha P^3 Q$ | $\mathcal{R}_3(D_4)$<br>$P^4 = \alpha E$<br>$Q^2 = E$<br>$QP = P^3Q$ |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|
| required gauge<br>transformations<br>required class of<br>representations | $\begin{cases} P \to A \\ Q \to B \\ \alpha = -1 \end{cases}$              | $P \rightarrow A$ $Q \rightarrow \pm iB$ $\alpha = -1$                   | $P \rightarrow \pm iA,$ $Q \rightarrow \pm iB$ $\alpha = -1$         |

| required gauge                    | $(P \rightarrow A)$                            | $P \rightarrow A$               | $P \rightarrow \pm iA$ |
|-----------------------------------|------------------------------------------------|---------------------------------|------------------------|
| transformations                   | $\begin{cases} P \to A \\ Q \to B \end{cases}$ | $Q \rightarrow \pm \mathrm{i}B$ | $Q \rightarrow \pm iB$ |
| required class of representations | $\alpha = -1$                                  | $\alpha = -1$                   | $\alpha = -1$          |

| The chara   | cter systems are now derived by effecting the gauge transformations on the elements of               |
|-------------|------------------------------------------------------------------------------------------------------|
| a represen  | ntation group and then dividing the relevant projective characters through by any                    |
| resulting ] | phase factors to obtain the characters of the double-valued representations of $D'_4$ .              |
| As an exam  | mple we choose $\mathscr{R}_3(D_4)$ . The required projective characters are those of the separably- |
| degenerat   | e $G_{1\alpha}$ representation:                                                                      |

| $\mathscr{R}_{3}(D_{4})$                                               |                                          | $P^4$                                          | $\{P\}$                                           | $\{P^5\}$                                                       | $\{P^2\}$            | $\{Q\}$                 | $\{PQ\}$      |
|------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|----------------------|-------------------------|---------------|
| $G_{1\alpha} \begin{cases} G_{1\alpha}^+ \\ G_{1\alpha}^- \end{cases}$ | $\begin{array}{c}2\\2\end{array}$        | $-2 \\ -2$                                     | ${rac{\mathrm{i}\sqrt{2}}{-\mathrm{i}\sqrt{2}}}$ | $-rac{\mathrm{i}\sqrt{2}}{\mathrm{i}\sqrt{2}}$                 | 0<br>0               | 0<br>0                  | 0<br>0        |
| phase factor $\times D'_4$<br>$E_{\frac{1}{2}}$<br>$E_{\frac{3}{2}}$   | $egin{array}{c} E \\ 2 \\ 2 \end{array}$ | $\begin{array}{c} A^4 \\ -2 \\ -2 \end{array}$ | $\mathrm{i}\{A\} \ \sqrt{2} \ -\sqrt{2}$          | $egin{array}{c} { m i}\{A^5\}\ -\sqrt{2}\ \sqrt{2} \end{array}$ | $-\{A^2\}$<br>0<br>0 | i{ <i>B</i> }<br>0<br>0 | $-\{AB\}$ 0 0 |

This process has, therefore, resolved the complex-conjugate pair of representations  $\{G_{1\alpha}^+, G_{1\alpha}^-\}$ into the real double-valued representations  $\{E_{\frac{1}{4}}, E_{\frac{3}{4}}\}$  of  $D'_{4}$ . The same representations are obtained as a set, whatever combinations of  $\pm$  signs in the phase factors are used. Further, the same set of representations is similarly obtained from  $\mathscr{R}_1(D_4)$  and  $\mathscr{R}_2(D_4)$ .

The case of the regular octahedral double group,  $O'_{h} = G$ , is interesting since it provides the simplest example among the point groups where the double-valued representations are derived from one of several classes of projective representations. The generating relationships for the

**PHILOSOPHICAL TRANSACTIONS** 

matrices corresponding to the elements of the different representation groups are simplified by writing them in terms of the matrices of those elements which can be mapped onto matrices of corresponding elements of  $O'_h$ :

| $O'_h$                                                              | $\mathscr{R}_1(O_h)$                                                        | $\mathscr{R}_2(O_h)$                                                                                                                                                                                 | $\mathscr{R}_{3}(O_{h})$                                                                                                  | $\mathscr{R}_{4}(O_{h})$                                |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| BA = -AB $CA = BC$ $CB = ABC$ $DA = -BD$                            | $S^{2} = \beta E$ $R^{3} = T^{2} = E$ $QP = \alpha PQ$ $RP = QR$ $RQ = PQR$ | $P^{2} = Q^{2} = \alpha E$ $R^{3} = S^{2} = E$ $T^{2} = \beta E$ $QP = \alpha PQ$ $RP = QR$ $RQ = PQR$ $SP = \alpha QS$ $SQ = \alpha PS$ $SR = R^{2}S$ $TP = PT$ $TQ = QT$ $TR = RT$ $TS = \beta ST$ | $R^{3} = \vec{E}$ $S^{2} = T^{2} = \beta E$ $QP = \alpha PQ$ $RP = QR$                                                    | $S^{2} = \beta E$ $QP = \alpha PQ$ $RP = QR$ $RQ = PQR$ |
| required gauge transformations<br>required class of representations | $ \begin{cases} S \to D \\ T \to I \end{cases} $                            | $S \rightarrow \pm iD$<br>$T \rightarrow I$                                                                                                                                                          | $P \rightarrow A$ $Q \rightarrow B$ $R \rightarrow C$ $S \rightarrow \pm iD$ $T \rightarrow I$ $\alpha = -1$ $\beta = +1$ | $T \rightarrow \pm il$                                  |

The calculation of the double-valued representations then proceeds as in the preceding example of  $D'_4$  and identical sets of double-valued representations of  $O'_h$  are obtained from all four representation groups.

#### 8.2 Derivation of the single-valued, double-valued and protective representations of the space groups

Koster (1957) reduced the problem of determining space group representations to that of determining the representations of  $P(\mathbf{k})$ , the space group of the  $\mathbf{k}$ -vector in reciprocal space. These are found from the representations of the quotient of  $P(\mathbf{k})$  with the translation group. This is the point group  $G_0(\mathbf{k})$ . In general, however, the multiplication rules required for the representations of  $G_0(\mathbf{k})$  will contain factor systems. Hurley (1966) noticed that Koster's results led to the conclusion that the vector representations of  $G_0(\mathbf{k})$  were sufficient when dealing with points in the interior of the first Brillouin zone for non-symmorphic space groups and for all points in symmorphic space groups. Projective representations are, however, required for points on the surface or the outside of non-symmorphic space groups. Hurley (1966) showed how the space group representations could be derived from his tables of projective representations and we shall show that the space group representations, and hence which representation group, is chosen. However, where erroneous tables have been published these do indeed lead to incorrect space group representations. We shall also show that double-valued space group representations are easily obtainable from our tables of representation groups.

Our first example concerns the point **R** on the surface of the Brillouin zone of the space group  $O_h^2 (\equiv Pn3n)$ . For this point,  $G_0(\mathbf{k})$  is  $O_h$  and a suitable set of generators for this group can be derived from those given by Bradley & Cracknell (1972). These are, in Seitz notation,

 $\mathbf{A} = \{C_{2x}|000\}, \quad \mathbf{B} = \{C_{2y}|000\}, \quad \mathbf{C} = \{C_{31}^+|000\}, \quad \mathbf{D} = \{C_{26}|000\}; \quad \mathbf{I} = \{S_2|\frac{1}{2}\frac{1}{2}\frac{1}{2}\}$ 

and direct application of Bradley & Cracknell's tables yields the relationship between these generators of  $P(\mathbf{k})$ . As in §8.1 these are compared with the generating relations for the matrices of the representation group to determine the relevant class of projective representations and also the phase factors by which their characters are to be modified:

| P(k)                                 | $\mathscr{R}_{1}(O_h)$                                              | $\mathscr{R}_2(O_h)$            | $\mathscr{R}_{3}(O_h)$          | $\mathscr{R}_4(O_h)$         |
|--------------------------------------|---------------------------------------------------------------------|---------------------------------|---------------------------------|------------------------------|
| $A^2 = B^2 = E$                      | $P^2 = Q^2 = lpha E$                                                | $P^2 = Q^2 = lpha E$            | $P^2 = Q^2 = \alpha E$          | $P^2 = Q^2 = T^2 = \alpha E$ |
| $C^3 = E$                            | $S^2=etaE$                                                          | $R^3 = S^2 = E$                 | $R^3 = E$                       | $R^3 = E$                    |
| $D^2=I^2=E$                          | $R^3 = T^2 = E$                                                     | $T^2 = \beta E$                 | $S^2 = T^2 = \beta E$           | $S^2=etaE$                   |
| BA = AB                              | $QP = \alpha PQ$                                                    | $QP = \alpha PQ$                | $QP = \alpha PQ$                | $QP = \alpha PQ$             |
| CA = BC                              | RP = QR                                                             | RP = QR                         | RP = QR                         | RP = QR                      |
| CB = ABC                             | RQ = PQR                                                            | RQ = PQR                        | RQ = PQR                        | RQ = PQR                     |
| DA = BD                              | $SP = \alpha QS$                                                    | $SP = \alpha QS$                | $SP = \alpha QS$                | $SP = \alpha QS$             |
| DB = AD<br>$DC = C^2D$               | SQ = lpha PS<br>$SR = R^2S$                                         | $SQ = \alpha PS$<br>$SR = R^2S$ | $SQ = \alpha PS$<br>$SR = R^2S$ | SQ = lpha PS<br>$SR = R^2S$  |
| IA = AI                              | TP = PT                                                             | TP = PT                         | TP = PT                         | TP = PT                      |
| IB = BI                              | TQ = QT                                                             | TQ = QT                         | TQ = QT                         | TQ = QT                      |
| IC = CI                              | TR = RT                                                             | TR = RT                         | TR = RT                         | TR = RT                      |
| ID = -DI                             | TS = lpha eta ST                                                    | $TS = \beta ST$                 | $TS = \beta ST$                 | $TS = \beta ST$              |
|                                      | $(P \rightarrow A)$                                                 | $P \rightarrow A$               | $P \rightarrow A$               | $P \rightarrow A$            |
| required gauge                       | $Q \rightarrow B$                                                   | Q  ightarrow B                  | $Q \rightarrow B$               | $Q \rightarrow B$            |
| transformation                       | $\langle R \rightarrow C$                                           | $R \rightarrow C$               | $R \rightarrow C$               | $R \rightarrow C$            |
|                                      | $S \rightarrow \pm iD$                                              | $S \rightarrow D$               | $S \rightarrow \pm iD$          | $S \rightarrow \pm iD$       |
| ···· 1 ·1··· - C                     | $T \rightarrow I$                                                   | $T \rightarrow \pm il$          | $T \rightarrow \pm iI$          | $T \rightarrow \pm il$       |
| required class of<br>representations | $iggl\{ egin{smallmatrix} lpha=+1\ eta=-1 \end{smallmatrix}  ight.$ | lpha = +1<br>eta = -1           | $lpha=+1\ eta=-1$               | $lpha=+1\ eta=-1$            |

Inspection of the appropriate classes of representations and division of the characters by the phase factors resulting from the gauge transformations confirms that the space group representations are unique.

A further example will usefully consider the point L in  $O_{\hbar}^{8} \equiv Fd3c$ ). The group  $G_{0}(\mathbf{k})$  is  $D_{3\hbar}$  and generating matrices for this are suitably chosen as  $\mathbf{A} = \{S_{61}^{-}|\frac{3}{4}\frac{3}{4}\frac{3}{4}\}$  and  $\mathbf{B} = \{C_{2b}|\frac{1}{4}\frac{1}{4}\frac{1}{4}\}$ . The relations between these generators and those of the representation groups of  $D_{3\hbar}$  are compared below:

| P(k)                                                                      | $\mathscr{R}_1(D_{3d})$                                                                                                         | $\mathscr{R}_2(D_{3d})$                                                                 | $\mathscr{R}_{3}(D_{3d})$                                                              |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| $A^{6} = E$ $B^{2} = E$ $BA = -A^{5}B$                                    | $egin{array}{lll} {\cal P}^6&=lpha {\cal E}\ {\cal Q}^2&=lpha {\cal E}\ {\cal Q}{\cal P}&=lpha {\cal P}^5 {\cal Q} \end{array}$ | $egin{array}{lll} {\cal P}^6&=lpha E\ Q^2&=E\ Q{\cal P}&=lpha {\cal P}^5 Q \end{array}$ | $egin{array}{lll} {P^6} &= {E} \ {Q^2} &= lpha {E} \ {QP} &= lpha {P^5} Q \end{array}$ |
| required gauge<br>transformations<br>required class of<br>representations | $\begin{cases} P \rightarrow \pm iA \\ Q \rightarrow \pm iB \\ \alpha = -1 \end{cases}$                                         | $P \rightarrow \pm iA$ $Q \rightarrow B$ $\alpha = -1$                                  | $P \rightarrow A$ $Q \rightarrow \pm iB$ $\alpha = -1$                                 |

In all three cases, and for all choices of  $\pm$  signs in the phase factors, the same space group representations result.

The final example concerns the double-valued representations of the point R of  $O_h^2$  discussed in the first example. The relations between the generating matrices for  $P(\mathbf{k})$  differ from those for the single-valued representations only in the signs of  $A^2$ ,  $B^2$ , BA, DA and DB. The appropriate gauge transformations and choices of representations are therefore

$$\begin{aligned} \mathscr{R}_1(O_h): & P \to A, \quad Q \to B, \quad R \to C, \quad S \to D, \quad T \to I; \qquad \alpha = -1, \quad \beta = -1 \\ \mathscr{R}_2(O_h): & P \to A, \quad Q \to B, \quad R \to C, \quad S \to D, \quad T \to \pm iI; \quad \alpha = -1, \quad \beta = -1 \end{aligned}$$

**PHILOSOPHICAL TRANSACTIONS** 

269

The double-valued space group representations so produced are again unique, irrespective of the choice of representation group.

The projective representations of the space groups, recently discussed by Bradley & Backhouse (1970, 1972) and Backhouse (1970, 1971) could also be straightforwardly derived from our representation group tables. The advantage of these is that they allow one to construct the equivalent, but different, sets of projective representations and hence give greater flexibility for ascending and descending in symmetry.

We are grateful to the United Kingdom Science Research Council for the award of a Research Studentship (to K.F.G.).

#### REFERENCES

- Boyle, L. L. 1972 Int. J. Quant. Chem. 6, 725.
- Backhouse, N. B. 1970 Q. Jl Math. 21, 277.
- Backhouse, N. B. 1971 Q. Jl Math. 22, 277.
- Bradley, C. J. & Backhouse, N. B. 1970 Q. Jl Math. 21, 203.
- Bradley, C. J. & Backhouse, N. B. 1972 Q. Jl Math. 23, 225.
- Bradley, C. J. & Cracknell, A. P. 1972 The mathematical theory of symmetry in solids. Oxford: Clarendon Press. Döring, W. 1956 Z. Naturforsch. 14A, 343.
- Frobenius, G. 1898 S'ber. preuss. Akad. Wiss. p. 501.
- Frobenius, G. & Schur, I. 1966 S'ber. preuss. Akad. Wiss. p. 186.
- Green, K. F. 1976 Representation theory of finite groups. Ph.D. thesis: University of Kent at Canterbury.
- Harter, W. G. 1969 J. Math. Phys. 10, 739.
- Hurley, A. C. 1966 Phil. Trans. R. Soc. Lond. A 260, 1.
- Jahn H. A. & Teller, E. 1937 Proc. R. Soc. Lond. A161, 220.
- Janssen, T. 1973 Crystallographic groups. Amsterdam: Noord Holland.
- Koster, G. F. 1957 Solid St. Phys. 5, 173.
- Mozrzymas, J. 1975 Bull. Acad. polon. Sci. 22, 485, 493.
- Rudra, P. 1965 J. Math. Phys. 6, 1273.
- Schur, I. 1904 J. reine angew. Math. 127, 20.
- Schur, I. 1907 J. reine angew. Math. 132, 85.
- Weyl, H. 1931 The theory of groups and quantum mechanics. London: Methuen.

THE ROYAL A SOCIETY

**PHILOSOPHICAL TRANSACTIONS** 

| TRANSACTIONS SOCIET                                 |                                                                                | 161                  |
|-----------------------------------------------------|--------------------------------------------------------------------------------|----------------------|
| MATHEMATICAI<br>PHYSICAL<br>& ENGINEERIN<br>CLENCES | $\frac{\mathscr{R}(D_{2h})}{\frac{A_{\theta}}{B_{10}}}$                        | E<br>1<br>1          |
| ≤r ფù                                               | B <sub>10</sub><br>B <sub>10</sub><br>A <sub>1</sub>                           | 1                    |
| L                                                   | $B_{14}$<br>$B_{24}$                                                           | 1<br>1<br>1          |
| X<br>X<br>X                                         | Bau                                                                            | 1                    |
| LET<br>ET                                           | $E^{2}_{a}$<br>$E^{i}_{a}$                                                     | 2                    |
| THE ROYAL<br>SOCIETY                                | $E_{\vec{k}}^{p}$<br>$E_{\gamma}$                                              | ******               |
|                                                     | 100                                                                            | 2<br>2               |
| DSOPHICAL<br>SACTIONS                               | $G_{a\beta} \begin{cases} G_{a\beta} \\ G_{a\beta} \\ G_{a\gamma} \end{cases}$ | 20 20 20 20 20 20 20 |
| SOPH<br>SACTIC                                      |                                                                                | 2                    |
|                                                     | E'                                                                             | 2                    |
| TRA                                                 | Εαβγ                                                                           | 2                    |
|                                                     |                                                                                |                      |

|               |                                          |        |        |        |        |                  |              |              |             |           | T/             | ABLE 3 (cont.) |                                                                      |                                    |                            |                                          |                                            |                                                      |                                                                                                          |                                                      |                                                                                                          |                                                                                                            |                                              |                                                                                                           |
|---------------|------------------------------------------|--------|--------|--------|--------|------------------|--------------|--------------|-------------|-----------|----------------|----------------|----------------------------------------------------------------------|------------------------------------|----------------------------|------------------------------------------|--------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|               | 1                                        | $1c_1$ | $1e_2$ | $1e_2$ | $1e_2$ | $1c_2$           | $1e_2$       | $1e_1$       | $1c_2$      | 404       | 444            | 404            | $4c_4$                                                               | 4c4                                | 444                        | $4e_4$                                   | $4e_4$                                     | $4\epsilon_4$                                        | $4e_4$                                                                                                   | $4e_4$                                               | $4\epsilon_4$                                                                                            | $4e_2$                                                                                                     | $4\epsilon_{3}$                              | 64 elements                                                                                               |
| RERING        |                                          | Ē      | P2     | Q2     | R4     | $P^{\pm}Q^{\mp}$ | $P^{2}R^{2}$ | $Q^{2}R^{2}$ | $P^2Q^2R^2$ | PQ2, P1Q2 | $QR^2, Q^3R^2$ | P1R, P1R0      | P, P <sup>3</sup><br>PR <sup>4</sup> , P <sup>3</sup> R <sup>4</sup> | $Q, Q^{2}$<br>$P^{2}Q, P^{2}Q^{3}$ | $R, R^a$<br>$Q^2R, Q^2R^a$ | PQ<br>$P^3Q$<br>$PQ^3R^2$<br>$P^3Q^3R^3$ | $PQ^3$<br>$P^2Q^3$<br>$PQR^2$<br>$P^3QR^3$ | PR<br>$PR^{0}$<br>$P^{3}Q^{2}R$<br>$P^{3}Q^{2}R^{3}$ | P <sup>3</sup> R<br>P <sup>3</sup> R <sup>3</sup><br>PQ <sup>2</sup> R<br>PQ <sup>2</sup> R <sup>3</sup> | QR<br>$Q^{2}R$<br>$P^{2}QR^{0}$<br>$P^{2}Q^{2}R^{0}$ | QR <sup>a</sup><br>Q <sup>3</sup> R <sup>3</sup><br>P <sup>2</sup> QR<br>P <sup>3</sup> Q <sup>3</sup> R | PQR<br>P <sup>3</sup> QR <sup>3</sup><br>P <sup>3</sup> Q <sup>3</sup> R<br>PQ <sup>3</sup> R <sup>3</sup> | $PQR^a$<br>$PQ^aR$<br>$P^aQR$<br>$P^aQ^aR^a$ | $P^{4} = Q^{4} = R^{4} = E$ $QP = P^{3}Q$ $RQ = Q^{3}R$ $PR = R^{3}P$ $\alpha \qquad \beta \qquad \gamma$ |
| NCE           | 1,                                       | 1      | 1      | 1      | 1      | 1                | 1            | 1            | 1           | 1         | 1              | 1              | 1                                                                    | 1                                  | 1                          | 1                                        | 1                                          | 1                                                    | 1                                                                                                        | 1                                                    | 1                                                                                                        | 1                                                                                                          | 1                                            | 1                                                                                                         |
|               | B10                                      | 1      | 1      | 1      | 1      | 1                | 1            | 1            | 1           | 1         | - 1            | -1             | 1                                                                    | -1                                 | -1                         | -1                                       | -1                                         | -1                                                   | -1                                                                                                       | 1                                                    | 1                                                                                                        | 1                                                                                                          | 1                                            |                                                                                                           |
|               | Bto                                      | 1      | 1      | 1      | 1      | 1                | 1            | 1            | 1           | -1        | 1              | -1             | -1                                                                   | 1                                  | -1                         | -1                                       | -1                                         | 1                                                    | 1                                                                                                        | -1                                                   | -1                                                                                                       | 1                                                                                                          | 1                                            |                                                                                                           |
|               | Bay                                      | 1      | 1      | 1      | 1      | 1                | 1            | 1            | 1           | -1        | -1             | 1              | -1                                                                   | -1                                 | 1                          | 1                                        | 1                                          | -1                                                   | -1                                                                                                       | -1                                                   | -1                                                                                                       | 1                                                                                                          | 1                                            | 1 1 1                                                                                                     |
|               | A <sub>u</sub>                           | 1      | 1      | 1      | 1      | 1                | 1            | 1            | 1           | -1        | -1             | -1             | -1                                                                   | -1                                 | -1                         | 1                                        | 1                                          | 1                                                    | 1                                                                                                        | 1                                                    | 1                                                                                                        | -1                                                                                                         | -1                                           | 1 St 13 12                                                                                                |
|               | B <sub>14</sub>                          | 1      | 1      | 1      |        | 1                |              | - 1          | 1           | -1        | 1              | 1              | -1                                                                   | 1                                  | 1                          | -1                                       | -1                                         | -1                                                   | -1                                                                                                       | 1                                                    | 1                                                                                                        | -1                                                                                                         | -1                                           |                                                                                                           |
|               | Bra                                      | 1      | 1      | 1      | 1      | 1                | 1            | 1            | 1           | 1         | -1             | 1              | 1                                                                    | -1                                 | 1                          | -1                                       | -1                                         | 1                                                    | 1                                                                                                        | -1                                                   | -1                                                                                                       | -1                                                                                                         | -1                                           |                                                                                                           |
|               | B <sub>3u</sub>                          | 1      | 1      | 1      | 1      | 1                | 1            | 1            | 1           | 1         | 1              | -1             | 1                                                                    | 1                                  | -1                         | 1                                        | 1                                          | -1                                                   | -1                                                                                                       | -1                                                   | -1                                                                                                       | -1                                                                                                         | -1                                           | l.                                                                                                        |
|               | 10g                                      | 2      | 2      | -2     | 2      | -2               | 2            | -2           | -2          | 2         | 0              | 0              | -2                                                                   | 0                                  | 0                          | 0                                        | 0                                          | 0                                                    | 0                                                                                                        | 0                                                    | 0                                                                                                        | 0                                                                                                          | 0                                            | } -1 1 1                                                                                                  |
| ш             | 27                                       | 2      | 2      | - 2    | 2      | -2               | -            | -2           | -2          | -2        | 0              | 0              | 2                                                                    | 0                                  | 0                          | 0                                        | 0                                          | 0                                                    | 0                                                                                                        | 0                                                    | 0                                                                                                        | 0                                                                                                          | 0                                            | l'anna anna anna anna anna anna anna ann                                                                  |
|               | $E_{\beta}$                              | 2      | 2      | 2      | -2     | 2                | -2           | -2<br>-2     | -2          |           | 2              | A.             | 0                                                                    | -2                                 | 0                          | 0                                        | 0                                          | 0                                                    | 0                                                                                                        | 0                                                    | 0                                                                                                        | 0                                                                                                          | 0                                            | 1 -1 1                                                                                                    |
|               | E                                        | 2      | -2     | 0      | -2     | -2               | $-2 \\ -2$   | - 2          | -2<br>-2    | 0         | -2             | a              | 0                                                                    | 0                                  | - 0                        | 0                                        | 0                                          | 0                                                    | 0                                                                                                        | 0                                                    | 0                                                                                                        | 0                                                                                                          | ő                                            |                                                                                                           |
| 10            | E"                                       |        | -2     | 0      | -      | -2               | $-2 \\ -2$   | -            |             | 0         | 0              |                | 0                                                                    | 0                                  |                            | 0                                        | 0                                          | 0                                                    | 0                                                                                                        | 0                                                    | 0                                                                                                        | 0                                                                                                          | 0                                            | 1 1 -1                                                                                                    |
|               | Gas                                      |        |        | -2     | -2     | -2               |              | 5            | -2          | 0         | 0              |                | 0                                                                    | 0                                  | 0                          | -91                                      | - 2i                                       | 0                                                    | 0                                                                                                        | 0                                                    | 0                                                                                                        | 0                                                                                                          | 0                                            | 10 0 0 0                                                                                                  |
| SZ Gas        | 6-1                                      |        | 0      | - 2    | -2     | -2               | -2           |              | õ           | 0         | 0              | 0              | 0                                                                    | 0                                  | 0                          | - 21                                     | 2i                                         | 0                                                    | 0                                                                                                        | 0                                                    | 0                                                                                                        | 0                                                                                                          | ŏ                                            | -1 -1 1                                                                                                   |
|               |                                          |        | -2     | -2     | 2      | 2                | -2           | -2           | 2           | 0         | 0              | 0              | 0                                                                    | 0                                  | 0                          | 0                                        | 0                                          | 21                                                   | - 2i                                                                                                     | 0                                                    | 0                                                                                                        | 0                                                                                                          | 0                                            | 1                                                                                                         |
| $G_{a\gamma}$ | GT.                                      | 2      | -2     | -2     | õ      | -<br>-           | -2           | -2           |             | 0         | 0              | ŏ              | 0                                                                    | 0                                  | 0                          | 0                                        | 0                                          | - 2i                                                 | 21                                                                                                       | 0                                                    | 0                                                                                                        | ő                                                                                                          | ő                                            | -1 1 -1                                                                                                   |
|               | Gt.                                      | 2      | -2     | 2      | -2     | -2               | 2            | -2           | 2           | 0         | 0              | 0              | 0                                                                    | 0                                  | 0                          | 0                                        | 0                                          | 0                                                    | 0                                                                                                        | 21                                                   | - 2i                                                                                                     | 0                                                                                                          | õ                                            | h                                                                                                         |
| S O Gay       | $G^+_{\beta\gamma}$<br>$G^{\beta\gamma}$ | 2      | -2     | 2      | -2     | -2               | 2            | -2           | 0           | 0         | 0              | 0              | 0                                                                    | 0                                  | 0                          | 0                                        | 0                                          | 0                                                    | 0                                                                                                        | - 2i                                                 | 21                                                                                                       | Ő.                                                                                                         | 0                                            | 1 - 1 - 1                                                                                                 |
|               | Easy                                     | 2      | -2     | -2     | -2     | 2                | 2            | 2            | -2          | 0         | 0              | 0              | 0                                                                    | 0                                  | 0                          | 0                                        | 0                                          | 0                                                    | 0                                                                                                        | 0                                                    | 0                                                                                                        | 2                                                                                                          | -2                                           | li                                                                                                        |
| I RA          | Εάβγ                                     | 2      | -2     | -2     | -2     | 2                | 2            | 2            | - 2         | 0         | õ              | ŏ              | 0                                                                    | ŏ                                  | õ                          | õ                                        | 0                                          | 0                                                    | 0                                                                                                        | 0                                                    | 0                                                                                                        | -2                                                                                                         | 2                                            | -1 -1 -1                                                                                                  |
|               | D <sub>EA</sub>                          | E      |        |        |        |                  |              |              |             |           |                |                | A                                                                    | В                                  | С                          | AB                                       |                                            | AC                                                   |                                                                                                          | BC                                                   |                                                                                                          | ABC                                                                                                        |                                              | $\begin{array}{c} A^{2}=B^{2}=C^{2}=E\\ AB=BA\\ AC=CA\\ BC=CB \end{array}$                                |

ROYAL A

| THE R<br>SOCIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                              |                                                                       |                                                                       |                                            |                                         |                                                                         |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                      | TAB                                                                                                                                                                                                                                                               | ILE 3 (cont.)                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                   |                                                                                                                                                                                                             |                                                                                                      |                                                                                                |                                                                                                           |                                                                                                        |                                                                                                     |                                                                                                     |                                                                                                |                                                                                                |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1e_2$                                                                       | $1\epsilon_2$                                                         | $1e_2$                                                                | $1e_2$                                     | $1e_2$                                  | $1e_2$                                                                  | 162                                                                                              | $1\leqslant p\leqslant n-1\\2\epsilon_{2n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1\leqslant p\leqslant n-1\\ 2e_{2n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 1\leqslant p\leqslant n-1\\ 2c_{2n}\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{l} 1\leqslant p\leqslant n\\ 4c_{4n+heft4n, 2p-1} \end{array}$                                                                                                                                                                                                        | $\begin{array}{l} 1\leqslant p\leqslant n-1\\ 2e_{2n\left(\log(2n,p\right)} \end{array}$                                                                                                                                                                          | $\label{eq:product} \begin{split} 1 \leqslant p \leqslant n \\ 4 e_{4\pi/\ln(4\pi,2\pi-1)} \end{split}$                                                                                                                                                                                                                                                                                                                       | $\begin{array}{l} 1\leqslant p\leqslant 2n\\ 4\epsilon_{4n/bet(4n,1)-10}\end{array}$                              | $\begin{array}{l} 0\leqslant p\leqslant 2n-1\\ 4e_{4n}{}_{2n+3,s} \end{array}$                                                                                                                              | $\begin{array}{c} 4ne_4\\ 0\leqslant q\leqslant 2n-1 \end{array}$                                    | $\begin{array}{c} 4n\epsilon_4 \\ 0\leqslant q\leqslant 2n-1 \end{array}$                      | $\begin{array}{c} 4n \varepsilon_{4} \\ 1 \leqslant q \leqslant 2n \end{array}$                           | $\begin{array}{c} 4ne_4\\ 1\leqslant q\leqslant 2n\end{array}$                                         | $\begin{aligned} & 4ne_4 \\ & 0 \leqslant q \leqslant n-1 \end{aligned}$                            | $4n\epsilon_4$<br>$0 \leq q \leq n-1$                                                               | $4ne_2$<br>$1 \leq q \leq n$                                                                   | $4ne_2$<br>$1 \leq q \leq n$                                                                   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $P^{2n}$                                                                     | Qu                                                                    | $R^2$                                                                 | $Q^2R^2$                                   | $P^{2n}Q^2$                             | $P^{2n}R^{2}$                                                           | $P^{2*}Q^{2}R^{2}$                                                                               | $P^{i_{\pi-1}}P^{i_{\pi}}Q^{i}$<br>$P^{i_{\pi}}Q^{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $p_{4\pi-2\pi R^2} \ p_{2\pi R^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $P^{4n-2p}R^2 \\ P^{2p}Q^2R^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $P^{4n+1-2p}R^2$<br>$P^{2p-1}R^2$<br>$P^{4n+1-2p}$<br>$P^{2p-1}$                                                                                                                                                                                                                     | $P^{4n-2p} P^{2p}$                                                                                                                                                                                                                                                | $P^{4n+1-2x}Q^2R^2$<br>$P^{2p-1}Q^2R^2$<br>$P^{4n+1-2p}Q^2$<br>$P^{2p-1}Q^2$                                                                                                                                                                                                                                                                                                                                                  | $P^{4s+1-2p}Q^2R^1 \\ P^{4n+1-2p}Q^2R \\ P^{2p-1}R^0 \\ P^{2p-1}R$                                                | $P^{4n-2p}Q^2R^3$<br>$P^{4n-2p}Q^3R$<br>$P^{2p}R^3$<br>$P^{2p}R$                                                                                                                                            | $P^{2z}Q^3$<br>$P^{2z}Q$                                                                             | $P^{22}Q^{3}R^{2}$<br>$P^{2q}QR^{2}$                                                           | $P^{1q-1}Q^3R^1$<br>$P^{2q-1}Q$                                                                           | $P^{2q-1}QR^2$<br>$P^{2q-1}Q^3$                                                                        | $P^{4q+2}Q^{3}R$<br>$P^{4q+2}QR$<br>$P^{4q}Q^{3}R^{3}$<br>$P^{4q}QR^{3}$                            | $P^{4q+2}Q^{3}R^{3}$<br>$P^{4q+8}QR^{3}$<br>$P^{4q}Q^{3}R$<br>$P^{4q}QR$                            | $P^{4q-3}Q^3R^3$<br>$P^{4q-3}QR$<br>$P^{4q-3}QR^3$<br>$P^{4q-1}Q^3R$                           | $P^{4q-3}QR^{3}$<br>$P^{4q-5}Q^{3}R$<br>$P^{4q-1}Q^{3}R^{3}$<br>$P^{4q-1}QR$                   | q |
| $\label{eq:constraint} \begin{array}{c} A_{19}^{H} \\ B_{14} \\ B_{14}$ | 2 2 2 2 4 2 2 2 2 4 2 2 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 4 2 2 4 4 4 2 2 4 4 4 2 2 4 4 4 2 2 4 4 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | $\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2$ | $\begin{smallmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $ | $\begin{smallmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $ | 1<br>1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 | 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 | $\begin{smallmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\$ | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | $\begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 2\cos\left\{2 p\pi/n\right\}\\ 2\cos\left\{2 p\pi/n\right\}\\ 2\cos\left\{(2l-1)p\pi/n\right\}\\ 2\cos\left\{(2l-1)p\pi/n\right\}\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ 2\left(2 p\pi/n\right)\\ 2\left(2 p\pi/n\right)\\ -2\cos\left\{(2l-1)p\pi/n\right\}\\ -2\cos\left\{(2l-1)p\pi/n\right\}\\ -2\cos\left\{(2l-1)p\pi/n\right\}\\ -2\cos\left\{(2l-1)p\pi/n\right\}\\ -2\cos\left\{(2l-1)p\pi/n\right\}\\ 2\left(-1\right)^{p}\\ 4\cos\left\{(2l-1)p\pi/n\right\}\\ -2\\ -2\\ 2\left(-1\right)^{p+1}\\ 2\left(-1\right)^{p+1}\\ 2\left(-1\right)^{p+1}\\ 2\left(-1\right)^{p+1}\\ 2\left(-1\right)^{p+1}\\ 2\left(-1\right)^{p+1}\\ 2\left(-1\right)^{p+1}\\ 2\left(-1\right)^{p+1}\\ 2\left(-1\right)^{p+1}\\ -4\cos\left\{(2l-1)p\pi/n\right\}\end{array}$ | $\begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 2\cos\{2 \rho\pi/n\}\\ 2\cos\{(2l-1)\rho\pi/n\}\\ 2\cos\{(2l-1)\rho\pi/n\}\\ 2\cos\{(2l-1)\rho\pi/n\}\\ 2(-1)^{p+1}\\ 2(-$ | $\begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 2\cos\{2 p\pi/n\}\\ 2\cos\{2 p\pi/n\}\\ 2\cos\{(2l-1)p\pi/n\}\\ 2\cos\{(2l-1)p\pi/n\}\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ 2(-1)p\pi/n\\ -2\cos\{2 p\pi/n]\\ -2\cos\{2 p\pi/n]\\ -2\cos\{2 p\pi/n]\\ -2\cos\{(2l-1)p\pi/n\}\\ -2\cos\{(2l-1)p\pi/n\}\\ -2\cos\{(2l-1)p\pi/n\}\\ 2(-1)^{p+1}\\ 2(-1)^{p+1}\\ 2(-1)p\pi/n\\ 2(-1)p\\ 2(-1$ | $\begin{array}{c} 1\\ 1\\ -1\\ -1\\ -1\\ -1\\ 2 \cos \{l(2p-1) \pi/n\} \\ 2 \cos \{l(2p-1) \pi/n\} \\ 2 \cos \{(2l-1) (2p-1) \pi/n\} \\ 2 \cos \{(2l-1) (2p-1) \pi/n\} \\ 2 \cos \{l(2p-1) \pi/n\} \\ 2 \cos \{l(2p-1) \pi/n\} \\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$ | $\begin{array}{c} 2\cos\left\{(2l-1)\rho\pi/n\right\}\\ 2(-1)^p\\ 2(-1)^p\\ 4\cos\left\{(2l-1)\rho\pi/n\right\}\\ 2\\ 2\\ 2\\ 2(-1)^p\\ 2(-1)^p\\ 4\cos\left\{2l\rho\pi/n\right\}\\ 2(-1)^p\\ 2(-1)^p\\ 2(-1)^p\\ 4\cos\left\{(2l-1)\rho\pi/n\right\}\end{array}$ | $\begin{array}{c} 1\\ 1\\ -1\\ -1\\ -1\\ -1\\ 2\cos \{l(2p-1)\ \pi/n\}\\ 2\cos \{l(2p-1)\ \pi/n\}\\ 2\cos \{l(2p-1)\ \pi/n\}\\ 2\cos \{(2l-1)\ (2p-1)\ \pi/n\}\\ -2\\ 2\\ -2\cos \{(2p-1)\ \pi/n\}\\ -2\cos \{l(2p-1)\ \pi/n\}\\ -2\cos \{l(2p-1)\ \pi/n\}\\ -2\cos \{(2l-1)\ (2p-1)\ \pi/2n\}\\ -2\cos \{(2l-1)\ (2p-1)\ \pi/2n\}\\ -2\cos \{(2l-1)\ (2p-1)\ \pi/2n\}\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$ | $\begin{array}{c} -2i\sin\left\{(2l-1)(2p-1)\pi/2n\right\}\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$ | $\begin{array}{c} 0 \\ 0 \\ 2i \sin (2lp\pi/n) \\ -2i \sin (2lp\pi/n) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2i \sin \{(2l-1) p\pi/n\} \\ -2i \sin \{(2l-1) p\pi/n\} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $ | $ \begin{array}{c} 1 \\ -1 \\ 1 \\ -1 \\ -1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$ | $ \begin{array}{c} 1 \\ -1 \\ 1 \\ -1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$ | $ \begin{array}{c} 1 \\ -1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$ | $\begin{array}{c} 1\\ -1\\ -1\\ 1\\ -1\\ 1\\ -1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$ | $ \begin{array}{c} 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$ | $ \begin{array}{c} 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$ | $ \begin{array}{c} 1 \\ -1 \\ -1 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$ | $ \begin{array}{c} 1 \\ -1 \\ -1 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$ |   |
| $D_{2n3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                              |                                                                       |                                                                       |                                            |                                         |                                                                         |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $A^{2p-1}$                                                                                                                                                                                                                                                                           | $A^{2p}$                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                               | $A^{2p-1}C$                                                                                                       | $A^{2p}C$                                                                                                                                                                                                   | $\begin{array}{c} A^{2q}B\\ 0\leqslant q\leqslant n-1 \end{array}$                                   |                                                                                                | $\begin{array}{c} A^{1q-1}B\\ 1\leqslant q\leqslant n \end{array}$                                        |                                                                                                        | $A^{4q}BC$<br>$0 \leq q \leq \frac{1}{2}(n-1)$                                                      | $A^{4_2-1}BC$<br>) $1 \le q \le \frac{1}{2}n$                                                       | $A^{4q-3}BC$<br>$1 \leq q \leq \frac{1}{2}(n+1)$                                               | $A^{4q-1}BC$<br>) $1 \le q \le \frac{1}{2}\pi$                                                 |   |

# L. L. BOYLE AND KERIE F. GREEN



ANSACTIONS SOCIETY A

# REPRESENTATIONS OF POINT GROUPS

| NL TH<br>IS SO                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                       |                                                       |                                                                                             |                        |                                                    |                            |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                      | 1-1-0-1                                                                                                                                                                              | 1-1-0-1                                                                                                                                          | 1-1-1-1-1                                                                                                                                                                                        | 1 - 1 - 0 - 1 - 1                                                                                                                                       | TABLE 3 (cont.)                                                                                                                                                                                           |                                                                                                                                                            |                                                                                                                                                                         |                                                                                                       |                                                                                                              |                                                                                                                    |                                                                                                    |                                                                                                                                                  |                                                                                                                                        |                                                                                                                                  |                                                                                                                                        |                                                                                                                     |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------|----------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| HIC                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1e_1$      | 162 1                                                                                 | 1e <sub>1</sub> 1e <sub>2</sub>                       | $1\epsilon_2$                                                                               | $1\epsilon$            | 1 a                                                | 102                        | $1e_2$                                       | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $1 \leqslant p \leqslant 2n-1$<br>$2e_{4n/mS(4n,p)}$                                                                 | $\begin{array}{c} 1\leqslant p\leqslant 2n-1\\ 2c_{4n(n+24n,p)}\end{array}$                                                                                                          | $\begin{array}{l} 1 \leqslant p \leqslant 2n-1 \\ 2e_{4n/\mathrm{heff}4n, p} \end{array}$                                                        | $\begin{array}{l} 1\leqslant p\leqslant 2n\\ 4e_{8n(bet8n,4p-2)}\end{array}$                                                                                                                     | $\begin{array}{c} 1\leqslant p\leqslant 2n-1\\ 2e_{4n(\operatorname{heff}4n,p)}\end{array}$                                                             | $1 \leq p \leq 4n$ $4c_{3n} \ln t(2p-1, n)$                                                                                                                                                               | $\begin{array}{c} 0 \leqslant p \leqslant 4n-1 \\ 4 c_{4/\mathrm{hef}(n,\ p)} \end{array}$                                                                 | $\begin{array}{l} 1\leqslant p\leqslant 2n\\ 4e_{8n/b,\ell8n,4p-3)}\end{array}$                                                                                         | $8nc_4$                                                                                               | $Sne_4$                                                                                                      | $8n\epsilon_{s}$                                                                                                   | $8n\epsilon_4$                                                                                     | $8n\epsilon_4$                                                                                                                                   | $8n\epsilon_4$                                                                                                                         | $8n\epsilon_4$                                                                                                                   | $8n\epsilon_4$                                                                                                                         | 128n elements                                                                                                       |
| PHILOSOPHICAL<br>TRANSACTIONS | $\mathscr{R}_2(D_{4nh})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E           | P <sup>48</sup> (                                                                     | $Q^{\pm} = R^{\dagger}$                               | $Q^2R$                                                                                      | .* P4*                 | <sup>1</sup> Q <sup>3</sup> P                      | ×**R2                      | $P^{4=}Q^{4}R^{4}$                           | ₹ <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $P^{zz=z_TQ^2} P^{zz_TQ^2}$                                                                                          | $P^{sn-2\pi}R^2$<br>$P^{2\pi}R^2$                                                                                                                                                    | $P^{5n-2p}Q^2R^2$<br>$P^{2p}Q^2R^2$                                                                                                              | $P^{4n+3-4p}R^2 \ P^{4p-3}R^2 \ P^{4n+3-4p} \ P^{4p-3}$                                                                                                                                          | $P^{in-2p}$ $P^{2p}$                                                                                                                                    | $P^{4n+1-2p}Q^2R^3$<br>$P^{4n+1-2p}Q^2R$<br>$P^{2p-3}R^3$<br>$P^{2p-1}R$                                                                                                                                  | $P^{8n-2p}Q^2R^3$<br>$P^{8n-2p}Q^2R$<br>$P^{2p}R^3$<br>$P^{2p}R$                                                                                           | $P^{4n+3-4p}Q^{2}R^{2}$<br>$P^{4p-3}Q^{2}R^{2}$<br>$P^{4n+3-4p}Q^{2}$<br>$P^{4p-2}Q^{2}$                                                                                | $\label{eq:q_set} \begin{array}{l} 0\leqslant q\leqslant 4n-1 \\ \\ P^{3c}Q^3 \\ P^{2q}Q \end{array}$ | $\label{eq:q_star} \begin{array}{l} 0\leqslant q\leqslant 4n-1 \\ \\ P^{2z}Q^3R^2 \\ P^{2z}QR^2 \end{array}$ | $\label{eq:product} \begin{split} 1 \leqslant q \leqslant 4n \\ P^{z_{l}-1}Q^{z}R^{z} \\ P^{z_{l}-1}Q \end{split}$ | $\begin{split} &1\leqslant q\leqslant 4n\\ &P^{2q-1}QR^{\sharp}\\ &P^{2q-1}Q^{\sharp} \end{split}$ | $\begin{array}{l} 0 \leqslant q \leqslant n-1 \\ P^{4q-2}Q^{5}R^{3} \\ P^{4q-4}Q^{3}R \\ P^{4q-4}QR^{3} \\ P^{4q-4}QR \\ P^{4q-4}QR \end{array}$ | $\begin{array}{l} 0\leqslant q\leqslant n-1 \\ P^{4q-2}Q^3R \\ P^{4q-4}Q^3R^3 \\ P^{4q-2}QR \\ P^{4q-2}QR \\ P^{4q-4}QR^3 \end{array}$ | $\begin{array}{l} 0\leqslant q\leqslant n-1 \\ P^{4q-2}Q^{3}R^{3} \\ P^{4q-2}Q^{3}R \\ P^{4q-1}QR^{3} \\ P^{4q-3}QR \end{array}$ | $\begin{array}{l} 0\leqslant q\leqslant n-1 \\ P^{4q-1}Q^3R \\ P^{4q-3}Q^3R^3 \\ P^{4q-3}QR \\ P^{4q-3}QR \\ P^{4q-3}QR^3 \end{array}$ | $\begin{array}{l} P^{sn}=Q^{4}=R^{4}=E\\ QP=P^{4n-1}Q\\ RP=PR^{3}\\ RQ=Q^{3}R \end{array}$                          |
| vtical,<br>ering              | $A_{1s}$<br>$A_{2s}$<br>$B_{1s}$<br>$B_{2s}$<br>$A_{1u}$<br>$A_{2u}$<br>$B_{1u}$<br>$B_{1u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | I 1<br>1 1<br>1<br>1<br>1<br>1<br>1                                                   | 1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1  | 1<br>1<br>1<br>1<br>1<br>1                                                                  | 1<br>1<br>1<br>1<br>1  | 1                                                  | 1<br>1<br>1<br>1<br>1<br>1 | 1<br>1<br>1<br>1<br>1<br>1<br>1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                      |                                                                                                                                                                                      | 1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                  | 1<br>1<br>-1<br>-1<br>1<br>1<br>-1                                                                                                                                                               | 1<br>1<br>1<br>1<br>1<br>1                                                                                                                              | 1<br>-1<br>-1<br>-1<br>-1<br>-1<br>1<br>1                                                                                                                                                                 | $ \begin{array}{r}1\\1\\(-1)^{p}\\(-1)^{p}\\-1\\-1\\(-1)^{p+1}\\(-1)^{p+1}\end{array}$                                                                     | 1<br>-1<br>-1<br>1<br>1<br>-1                                                                                                                                           | 1<br>-1<br>1<br>-1<br>-1<br>1<br>-1                                                                   |                                                                                                              | 1<br>-1<br>-1<br>1<br>-1<br>1                                                                                      | 1<br>-1<br>-1<br>-1<br>-1<br>1<br>1                                                                | $     \begin{array}{c}       1 \\       -1 \\       1 \\       -1 \\       1 \\       -1 \\       1 \\       1     \end{array} $                 | 1<br>-1<br>1<br>-1<br>1<br>-1<br>1                                                                                                     | 1<br>-1<br>-1<br>1<br>1<br>-1<br>-1                                                                                              | 1<br>-1<br>-1<br>1<br>1<br>-1<br>-1                                                                                                    | $\left. \begin{array}{c} \alpha = + 1; \ \beta = + 1; \ \gamma = + 1 \end{array} \right.$                           |
| MATH<br>PHYS<br>& EN          | $\begin{array}{ll} l \leqslant l \leqslant 2n-1; & E_{lg} \\ l \leqslant l \leqslant 2n-1; & E_{lg} \\ l \leqslant l \leqslant 2n; & G_{lg} \begin{cases} G_{lg}^+ \\ G_{lg}^- \\ E_{lg} \\ E_{gf} \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2<br>2<br>2 | $     \begin{array}{ccc}       2 & -3 \\       2 & -3     \end{array} $               | -2 2                                                  | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | -2                     | 2 -1<br>2 1<br>2 1                                 | 2 2 2 2 2 2 2              | 2 2 2 2 2 2 2 2                              | 2 cos {<br>2 cos {<br>2 cos {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $2 \cos \{lp\pi/n\}  2 \cos \{lp\pi/n\}  is \{(2l-1)p\pi/2n\}  is \{(2l-1)p\pi/2n\}  -2  -2  -2  -2  -2  -2  -2  -2$ | $\begin{array}{c} 2\cos{\{lp\pi fn\}}\\ 2\cos{\{lp\pi fn\}}\\ 2\cos{\{(2l-1)p\pi f2n\}}\\ 2\cos{\{(2l-1)p\pi f2n\}}\\ 2\cos{\{(2l-1)p\pi f2n\}}\\ 2\\ 2\end{array}$                  | $2 \cos \{ lp\pi/n \}  2 \cos \{ lp\pi/n \}  2 \cos \{ (2l-1) p\pi/2n \}  2 \cos \{ (2l-1) p\pi/2n \}  -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -$ | $\begin{array}{c} 2\cos{\{l(4p-3)\pi/2n\}}\\ 2\cos{\{l(4p-3)\pi/2n\}}\\ 2i\sin{\{(2l-1)(4p-3)\pi/4n\}}\\ -2i\sin{\{(2l-1)(4p-3)\pi/4n\}}\\ -2i\sin{\{(2l-1)(4p-3)\pi/4n\}}\\ 2\\ -2 \end{array}$ | $\begin{array}{c} 2\cos{(lp\pi/n)} \\ 2\cos{(lp\pi/n)} \\ 2\cos{((lp\pi/n))} \\ 2\cos{((2l-1)p\pi/2n)} \\ 2\cos{((2l-1)p\pi/2n)} \\ 2 \\ 2 \end{array}$ | 0<br>0                                                                                                                                                                                                    | $\begin{array}{c} 2\cos{\{lp\pi/n\}}\\ -2\cos{\{lp\pi/n\}}\\ (-1)^{l+1}2\cos{\{(2l-1)\pi/2n\}}\\ (-1)^{l+1}2\cos{\{(2l-1)\pi/2n\}}\\ 0\\ 0\\ 0\end{array}$ | $\begin{array}{c} -1 \\ 2\cos\{l(4p-3) \pi/2n\} \\ 2\cos\{l(4p-3) \pi/2n\} \\ 2i\sin\{(2l-1) (4p-3) \pi/4n\} \\ -2i\sin\{(2l-1) (4p-3) \pi/4n\} \\ -2 \\ 2 \end{array}$ | 0<br>0<br>0<br>0<br>0<br>0                                                                            | 0<br>0<br>0<br>0<br>0<br>0                                                                                   |                                                                                                                    | -1<br>0<br>0<br>0<br>0<br>0<br>0                                                                   | -1<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                 | -1<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                  | 1<br>0<br>0<br>0<br>0<br>0                                                                                                       | 1<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                        | $\alpha = -1; \beta = +1; \gamma = +1$                                                                              |
|                               | $l \leq 2n-1$ ; $G_{i\beta} \begin{cases} G_{i\beta}^{i\gamma} \\ G_{i\beta} \\ E_{1\gamma} \\ E_{1\gamma} \\ G_{\gamma} $ |             | 2<br>2<br>2                                                                           |                                                       | $   \begin{array}{r}     -2 \\     -2 \\     -2   \end{array} $                             | <br> <br>  01 01 01 01 | 2 - 1<br>2 - 1<br>2 - 1<br>2 - 1<br>2 - 1<br>2 - 1 | 1.12.0                     | -2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2 | 2(<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2(-1)^{p+1}$<br>$2(-1)^{p+1}$<br>2<br>$2(-1)^{p}$<br>$2(-1)^{p}$<br>$2(-1)^{p}$<br>$(2l-1)^{p}/n$                   | $\begin{array}{c} 2(-1)^{p} \\ 2(-1)^{p} \\ -2 \\ -2 \\ 2(-1)^{p+1} \\ 2(-1)^{p+1} \\ -4\cos\left((2l-1)p\pi/n\right)\end{array}$                                                    | $\begin{array}{c} 2(-1)^{p+1} \\ 2(-1)^{p+1} \\ -2 \\ -2 \\ 2(-1)^{p+1} \\ 2(-1)^{p+1} \\ -4\cos\left((2l-1)\frac{p\pi}{n}\right)\end{array}$    | 0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                       | $\begin{array}{c} 2(-1)^{p} \\ 2(-1)^{p} \\ 2 \\ 2 \\ 2 \\ 2(-1)^{p} \\ 2(-1)^{p} \\ 4 \cos \{(2l-1) p\pi / n\} \end{array}$                            | $\begin{array}{c} 2i \sin \left\{ (2l-1) \left( 2p-1 \right) \pi / 2n \right\} \\ -2i \sin \left\{ (2l-1) \left( 2p-1 \right) \pi / 2n \right\} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$ | $2i \sin \{(2l-1) p\pi/n\} - 2i \sin \{(2l-1) p\pi/n\} = 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                   | 000000000000000000000000000000000000000                                                                                                                                 | 0<br>2<br>-2<br>0<br>0                                                                                | 0<br>-2<br>2<br>0<br>0                                                                                       | 0<br>0<br>0<br>0<br>0                                                                                              | 0<br>0<br>0<br>0<br>0                                                                              | 0<br>0<br>0<br>2i<br>- 2i                                                                                                                        | 0<br>0<br>0<br>- 2i<br>2i                                                                                                              | 000000000000000000000000000000000000000                                                                                          | 0<br>0<br>0<br>0                                                                                                                       | $\begin{cases} \alpha = +1; \ \beta = -1; \ \gamma = +1 \\ \\ \alpha = +1; \ \beta = +1; \ \gamma = -1 \end{cases}$ |
| E S                           | $1 \leq l \leq 2n; G_{lx\beta} \begin{cases} G_{lx\beta}^{T} \\ G_{lx\beta} \\ G_{lx\beta} \\ I \leq l \leq n; \\ G_{\beta\gamma} \begin{cases} G_{\beta\gamma} \\ G_{\beta\gamma} \\ G_{\beta\gamma} \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 2 4 2     | $ \begin{array}{cccc} -2 & -1 \\ -2 & -1 \\ -4 & \\ 2 & -1 \end{array} $              | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $-2 \\ -2 \\ -4 \\ 2$                                                                       | 2<br>2<br>-4<br>-2     | 2 - 1<br>2 - 1<br>4 2 - 1                          | -2<br>-2<br>4<br>-2        | 2<br>2<br>4<br>2<br>2                        | $-2\cos\{(2l - 2\cos\{(2l - 2\cos\{(2l - 4\cos\{(2l - 2\cos\{(2l - 4\cos\{(2l - 4))})))}))))))))))))))))))))))))$ | $(2l-1)(2p-1)\pi/2n)$                                                                                                | $\begin{array}{c} 2\cos\left\{ (2l-1) \ (2p-1) \ \pi/2n \right\} \\ 2\cos\left( (2l-1) \ (2p-1) \ \pi/2n \right) \\ -4\cos\left\{ (2l-1) \ p\pi/2n \right\} \\ -2 \\ -2 \end{array}$ | $-2\cos\{(2l-1)(2p-1)\pi/2n\}$                                                                                                                   | $\begin{array}{c} 2i\sin\left\{(2l-1) (4p-3) \pi/4n\right\} \\ - 2i\sin\left((2l-1) (4p-3) \pi/4n\right) \\ 0 \\ 0 \\ 0 \end{array}$                                                             | $2\cos\{(2l-1)(2p-1)\pi/2n\}$                                                                                                                           |                                                                                                                                                                                                           | $2i \sin \{(2l-1) p\pi/2n\} - 2i \sin \{(2l-1) p\pi/2n\} = 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                 | $\begin{array}{c} -2i\sin\left((2l-1)\left(4p-3\right)\pi/4n\right)\\ 2i\sin\left\{(2l-1)\left(4p-3\right)\pi/4n\right\}\\ 0\\ 0\\ 0\end{array}$                        | 000000000000000000000000000000000000000                                                               | 000000000000000000000000000000000000000                                                                      | 0<br>0<br>0<br>2i<br>9i                                                                                            | 0<br>0<br>- 2i                                                                                     | 000000000000000000000000000000000000000                                                                                                          | 000000000000000000000000000000000000000                                                                                                | 0000                                                                                                                             | 0                                                                                                                                      | $\begin{cases} \alpha = -1; \ \beta = -1; \ \gamma = +1 \\ \alpha = -1; \ \beta = +1; \ \gamma = -1 \end{cases}$    |
| HILOSOP<br>IRANSACT           | $\begin{array}{c} (G_{\beta\gamma} \\ E_{1\beta\gamma} \\ E_{2\beta\gamma} \\ l \leq l \leq n-1;  G_{l\beta\gamma} \\ l \leq l \leq n;  G_{b_{\beta}\beta} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 224         | $     \begin{array}{r}       2 & -1 \\       2 & -2 \\       4 & -2     \end{array} $ | $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | 2<br>2<br>4                                                                                 | $-2 \\ -2$             | 2 - :<br>2 - :                                     | -2<br>-2                   | 2<br>2<br>4<br>-4                            | 2<br>2<br>- 4 cos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2(-1)^{p+1}$<br>$2(-1)^{p+1}$<br>$\cos \{(2l-1) p\pi/n\}$<br>$\cos \{(2l-1) p\pi/2n\}$                              | $\begin{array}{c} 2(-1)^{p+1} \\ 2(-1)^{p+1} \\ -4\cos\left\{(2l-1)p\pi/n\right\} \\ -4\cos\left\{(2l-1)p\pi/2n\right\}\end{array}$                                                  | $\begin{array}{c} 2(-1)^{p} \\ 2(-1)^{p} \\ 4\cos\{(2l-1)p\pi/n\} \\ 4\cos\{(2l-1)p\pi/2n\} \end{array}$                                         | 0<br>0<br>0<br>0                                                                                                                                                                                 | $\begin{array}{c} 2(-1)^{p} \\ 2(-1)^{p} \\ 4\cos\left\{(2l-1)\rho\pi/n\right\} \\ 4\cos\left\{(2l-1)\rho\pi/2n\right\} \end{array}$                    | 0<br>0<br>0<br>0                                                                                                                                                                                          | 0<br>0<br>0<br>0                                                                                                                                           | 0<br>0<br>0                                                                                                                                                             | 0<br>0<br>0<br>0                                                                                      | 0<br>0<br>0<br>0                                                                                             | 0<br>0<br>0<br>0                                                                                                   | 0<br>0<br>0<br>0                                                                                   | 0<br>0<br>0<br>0                                                                                                                                 | 0<br>0<br>0<br>0                                                                                                                       | -2<br>0<br>0                                                                                                                     | -2<br>2<br>0<br>0                                                                                                                      | $\begin{cases} \alpha = +1; \ \beta = -1; \ \gamma = -1 \\ \alpha = -1; \ \beta = -1; \ \gamma = -1 \end{cases}$    |
|                               | $D_{4s\lambda}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E           |                                                                                       |                                                       |                                                                                             |                        |                                                    |                            |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                      |                                                                                                                                                                                      |                                                                                                                                                  | $\begin{array}{c}A^{2p-1}\\A^{2n+1-2p}\\1\leqslant p\leqslant n\end{array}$                                                                                                                      | A22                                                                                                                                                     | $\begin{array}{l} A^{1p-1}C\\ 1\leqslant p\leqslant 2n \end{array}$                                                                                                                                       | $\begin{array}{c} A^{2p}C\\ 0\leqslant p\leqslant 2n-1 \end{array}$                                                                                        |                                                                                                                                                                         | $\begin{array}{c} A^{2q}B\\ 0\leqslant q\leqslant 2n-1 \end{array}$                                   |                                                                                                              | $\begin{matrix} A^{2q-1}B\\ 1\leqslant q\leqslant 2n \end{matrix}$                                                 |                                                                                                    | $\begin{array}{c} A^{4q}BC\\ 0\leqslant q\leqslant n-1 \end{array}$                                                                              | $\begin{array}{c} A^{4q+2}BC\\ 0\leqslant q\leqslant n-1 \end{array}$                                                                  | $\begin{array}{c} A^{4q+1}BC\\ 0\leqslant q\leqslant n-1 \end{array}$                                                            | $\begin{array}{c} A^{4q+3}BC\\ 0\leqslant q\leqslant n-1 \end{array}$                                                                  | $\begin{array}{c} A^{4n}=B^{2}=C^{2}=E\\ BA=A^{2n-1}B\\ CA=AC;CB=BC \end{array}$                                    |

| THE ROYAL A SOCIETY         |  |
|-----------------------------|--|
| HILOSOPHICAL<br>RANSACTIONS |  |

| <b>OPHICAL</b><br>ACTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    | 161 1 | e <sub>2</sub> 1e <sub>2</sub>                  | 1e2 1e2                                               | 162         | $1e_2$                                        | $1e_2$           | $\begin{array}{l} 1\leqslant p\leqslant 2n-2\\ 2e_{4n-2} \end{array}$ | $\begin{array}{l} 1\leqslant p\leqslant 2n-2\\ 2e_{4n-2}\end{array}$ | $1\leqslant p\leqslant 2n-2\\2\epsilon_{4n-2}$              | $\begin{array}{l} 1\leqslant p\leqslant 2n-1\\ 4e_{(3n-4), \operatorname{bef}(4n-2, 2p-1)}\end{array}$ | $\begin{array}{l} 1\leqslant p\leqslant 2n-2\\ 2\epsilon_{(4n-2)\operatorname{ber}(4n-2,p)} \end{array}$ | TABLE 3 (cont.)<br>$1 \le p \le 4n-2$<br>$4e_{(4n-2) hef(4n-2,2p-1)}$             | $\begin{array}{l} 0\leqslant p\leqslant 4n-3\\ 4e_{(8n-4)(\log t(2n-1,\ p))}\end{array}$    | $\begin{array}{l} 1\leqslant p\leqslant 2n-1\\ 4c_{(8n-4)/\operatorname{het}/(4n-4,2p-1)}\end{array}$ | $(8n-4) e_4$<br>$0 \le n \le 4n-3$ | $(8n-4) e_4$<br>$0 \le a \le 4n-3$                     | $(8n-4)e_4$ $1 \le n \le 4n-2$                                           | $(8n-4) e_4$<br>1 < n < 4n - 2 | $(8n-4) \epsilon_4$<br>$0 \le n \le 2n-2$                                                               | $(8n-4) \epsilon_4$<br>$0 \leq q \leq 2n-2$                                        | $(8n-4) c_4$<br>$1 \le a \le 2n-1$                                              | $(8n-4) c_4$<br>$1 \le n \le 2n-4$                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------|-------------------------------------------------|-------------------------------------------------------|-------------|-----------------------------------------------|------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| TRANS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\Re_1(D_{(4n-2),k})$                                              | E P   | n-2 Q2                                          | $R^{\pm} Q^{2}I$                                      | $P^{4n-2}Q$ | <sup>2</sup> P <sup>4n-2</sup> R <sup>2</sup> | $P^{4s-2}Q^2R^2$ | $P^{\pi\pi-4-2\pi}Q^2$<br>$P^{2\pi}Q^2$                               | $P^{\pm n-4-2p}R^2$<br>$P^{\pm p}R^2$                                | $P^{\pm n-4-2x}Q^{\pm}R^{\pm}$<br>$P^{\pm x}Q^{\pm}R^{\pm}$ | $P^{4n-3+2p}Q^2$<br>$P^{4n-1-2p}Q^2$<br>$P^{8n-3-2p}$<br>$P^{2p-1}$                                    | $p_{2p} = p_{2p}$                                                                                        | $P^{4n-1-z_P}Q^2R^3$<br>$P^{4n-3-z_P}Q^2R$<br>$P^{4n-3-z_P}QR^5$<br>$P^{z_P-1}QR$ | $P^{4n-2-2\nu}Q^{3}R^{3}$<br>$P^{4n-2+2\nu}Q^{3}R$<br>$P^{4n-4-2\nu}QR^{3}$<br>$P^{2\nu}QR$ | $P^{4n-3+2p}Q^2R^2$<br>$P^{4n-1-2p}Q^2R^2$<br>$P^{5n-2-2p}R^2$<br>$P^{2p-1}R^2$                       | $p_{2iR}$<br>$p_{2iR}$             | $0 \leq q \leq q_1 = 3$<br>$P^2Q^2R^2$<br>$P^{2q}Q^2R$ | $P^{\pm n-2j \pm 1}Q^{\dagger}R^{\circ}$<br>$P^{\pm n-2j \pm 1}R$        |                                | $P^{4s-4i}Q^{3}R^{4}$<br>$P^{4s-4i}QR^{4}$<br>$P^{4s-4i}QR^{4}$<br>$P^{4s-4i}Q^{3}$<br>$P^{4s-4i}Q^{3}$ | $P^{4n-4q+2}Q^3R^2$<br>$P^{4n-4q+2}Q^3R^2$<br>$P^{4n-4q+2}Q^3$<br>$P^{4n-4q+2}Q^3$ | $P^{sn-1-4s}Q^3R^2$<br>$P^{sn-1-4s}QR^2$<br>$P^{sn-2-4s}QR^2$<br>$P^{sn-2-4s}Q$ | $P^{\pm n-3-4z}Q^3R^2$<br>$P^{\pm n-3-4z}Q^3R^2$<br>$P^{\pm n-1-4z}Q^3$<br>$P^{\pm n-1-4z}Q^3$<br>$P^{\pm n-1-4z}Q^3$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $egin{array}{c} A_{1x} \ A_{2x} \end{array}$                       | 1     |                                                 | 1 1<br>1 1                                            | 1           | 1<br>1                                        | 1                | 1                                                                     | 1                                                                    | 1<br>1                                                      | 1                                                                                                      | 1<br>1                                                                                                   | 1                                                                                 | 1                                                                                           | 1                                                                                                     | -1                                 | _1<br>_1                                               | -1                                                                       | 1<br>-1                        | -1<br>1                                                                                                 | 1<br>1                                                                             | 1<br>-1                                                                         | 1<br>-1                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $B_{1r}$<br>$B_{1r}$                                               | 1     | 1 1                                             | 1 1                                                   | 1           | 1                                             | 2                | 1                                                                     | 1                                                                    | 1                                                           | -1                                                                                                     | 1                                                                                                        | 1                                                                                 | -1<br>-1                                                                                    | -1                                                                                                    | -1                                 | -1                                                     | 1                                                                        | -1                             | -1                                                                                                      | -1                                                                                 | -1                                                                              | -1                                                                                                                    |
| ט ג                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $A_{1*}$                                                           | 1     | 1 1                                             | 1 1                                                   | 1           | 1                                             | 1                | 1                                                                     | î                                                                    | 1                                                           | ì                                                                                                      | i                                                                                                        | -1                                                                                | - î                                                                                         | 1                                                                                                     | ĩ                                  | î                                                      | 1                                                                        | i                              | - i                                                                                                     | - î                                                                                | -1                                                                              | - 1                                                                                                                   |
| ERIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $A_{2n}$<br>$B_{1n}$                                               | 1     | 1 1                                             | 1 1                                                   | 1           | 1                                             | 1                | 1                                                                     | 1                                                                    | 1                                                           | -1                                                                                                     | 1                                                                                                        | -1                                                                                | -1                                                                                          | 1                                                                                                     | -1                                 | -1                                                     | -1                                                                       | -1                             | 1                                                                                                       | 1                                                                                  | 1                                                                               | 1                                                                                                                     |
| IEMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $B_{2n}$                                                           | î     | îî                                              | îî                                                    | 1           | 1                                             | î                | î                                                                     | i                                                                    | i                                                           | -i                                                                                                     | î                                                                                                        | -1                                                                                | î                                                                                           | -1                                                                                                    | 1                                  | 1                                                      | -1                                                                       | -1                             | - î                                                                                                     | - 1                                                                                | 1                                                                               | 1                                                                                                                     |
| $\begin{array}{l} MATH\\ MATH\\ MATH\\ MATH\\ MATH\\ MATH\\ SEIEN\\ SEIENX\\ SEIEN\\ \mathsf{SEIENX\\ \mathsf{SEIENX\\ \mathsf{SEIENX\\ \mathsf{SEIENX\\ \mathsf{SEIENX\\ \mathsf{SEIENX\\ \mathsf{SEIENX\\ \mathsf{SEIENX\\ \mathsf{SEIENX\\ \mathsf{SEI$ | $E_{lg}$                                                           | 2     | 2 2                                             | 2 2                                                   | 2           | 2                                             | 2                | $2 \cos \{2lp\pi/(2n-1)\}$<br>$2 \cos \{2lp\pi/(2n-1)\}$              | $2 \cos (2lp\pi / (2n-1))$<br>$2 \cos (2lp\pi / (2n-1))$             | $2 \cos \{2lp\pi/(2n-1)\}$<br>$2 \cos \{2lp\pi/(2n-1)\}$    | $2 \cos \{l(2p-1) \pi / (2n-1)\}$<br>$2 \cos \{l(2p-1) \pi / (2n-1)\}$                                 | $2 \cos \{2lp\pi/(2n-1)\}$<br>$2 \cos \{2lp\pi/(2n-1)\}$                                                 | $2 \cos \{l(2p-1) \pi l(2n-1)\}$<br>- $2 \cos \{l(2p-1) \pi l(n-1)\}$             | $2 \cos (2lp\pi/(2n-1))$<br>- $2 \cos (2lp\pi/(2n-1))$                                      | $2 \cos \{l(2p-1) \pi/(2n-1)\}$<br>$2 \cos \{l(2p-1) \pi/(2n-1)\}$                                    | 0                                  | 0                                                      | 0                                                                        | 0                              | 0                                                                                                       | 0                                                                                  | 0                                                                               | 0                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $E_{1x}$                                                           | 2 -   | 2 2                                             | 2 2                                                   | $-2^{2}$    | -2                                            | $-\frac{2}{2}$   | $2(-1)^{p}$                                                           | $2(-1)^{p}$                                                          | $2(-1)^{p}$                                                 | $\frac{1}{2}\cos\left(i(2p-1)\frac{\pi}{2}(2n-1)\right)$                                               | $2(-1)^{p}$                                                                                              | $-2\cos(i(2p-1)\pi j(n-1))$<br>0                                                  | $-2\cos(2ip\pi/(2n-1))$<br>0                                                                | $2\cos\{i(2p-1)\pi_j(2n-1)\}=0$                                                                       | 0                                  | ö                                                      | 0                                                                        | 0                              | 2                                                                                                       | - 2                                                                                | õ                                                                               | 0<br>0                                                                                                                |
| $\leq l \leq n-1;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $E_{\pi\pi}$                                                       | 2 -   | 2 2                                             | 2 2                                                   | -2          | -2                                            | $-2 \\ -4$       | $2(-1)^{p}$<br>$4\cos\{(2l-1)p\pi/(2n-1)\}$                           | $2(-1)^{p}$<br>$4 \cos (2l-1) p\pi/(2n-1)$                           | $2(-1)^{p}$<br>$4 \cos \{(2l-1) \beta \pi / (2n-1)\}$       | 0                                                                                                      | $2(-1)^{p}$                                                                                              | 0                                                                                 | 0                                                                                           | 0                                                                                                     | 0                                  | 0                                                      | 0                                                                        | 0                              | -2                                                                                                      | 2                                                                                  | 0                                                                               | 0                                                                                                                     |
| <pre> 1 ≤ n − 1;</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $E_{1d}$                                                           | 2     | 2 -2                                            | 2 -2                                                  | -2          | 2                                             | -2               | -2                                                                    | $4\cos(2t-1)p\pi/(2t-1))$<br>2                                       | $4\cos\{(2t-1)p\pi/(2n-1)\}$<br>-2                          | 0                                                                                                      | $4\cos\{(2l-1)p\pi/(2n-1)\}$<br>2                                                                        | 0                                                                                 | 0                                                                                           | 0                                                                                                     | 2                                  | -2                                                     | 0                                                                        | 0                              | 0                                                                                                       | 0                                                                                  | 0                                                                               | 0                                                                                                                     |
| $\bigvee \sum_{i \leq n-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $E_{t\beta}$                                                       | 2     | 2 -2                                            | $\frac{2}{1}$ - 2                                     | -2          | 2                                             | -2               | -2                                                                    | 2                                                                    | -2                                                          | 0                                                                                                      | 2                                                                                                        | 0                                                                                 | 0                                                                                           | 0                                                                                                     | -2                                 | 2                                                      | 0                                                                        | 0                              | 0                                                                                                       | 0                                                                                  | 0                                                                               | 0                                                                                                                     |
| $CE^{n} = 1 = 1;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E14                                                                | 2     | 2 2                                             | -2 -2                                                 | -4          | -2                                            | $-\frac{4}{-2}$  | $-4\cos \{2lpn/(2n-1)\}$<br>2                                         | $4 \cos (2l \rho \pi / (2n-1)) - 2$                                  | $-4\cos \{2lp\pi/(2n-1)\}\$<br>-2                           | 2                                                                                                      | $4 \cos \{2lp\pi/(2n-1)\}$<br>2                                                                          | 0                                                                                 | 0                                                                                           | -2                                                                                                    | 0                                  | 0                                                      | 0                                                                        | 0                              | 0                                                                                                       | 0                                                                                  | 0                                                                               | 0                                                                                                                     |
| IET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $E_{2\gamma}$                                                      | 2     | 2 2                                             | -2 -2                                                 | 2           | - 2                                           | -2               | 2                                                                     | - 2                                                                  | -2                                                          | -2                                                                                                     | 2                                                                                                        | 0                                                                                 | 0                                                                                           | 2                                                                                                     | 0                                  | 0                                                      | 0                                                                        | 0                              | 0                                                                                                       | 0                                                                                  | 0                                                                               | 0                                                                                                                     |
| $\square \bigcup \leq l \leq 2n - 2;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $G_{l\gamma} \begin{cases} G_{l\gamma} \\ G_{l\gamma} \end{cases}$ | 2     | $\begin{array}{ccc} 2 & 2 \\ 2 & 2 \end{array}$ | -2 -2 -2 -2                                           | 2 2         | $-\frac{2}{-2}$                               | -2<br>-2         | $2 \cos \{2lp\pi/(2n-1)\}$<br>$2 \cos \{2lp\pi/(2n-1)\}$              | $-2 \cos \{2lp\pi/(2n-1)\}$<br>$-2 \cos \{2lp\pi/(2n-1)\}$           | $-2 \cos \{2lp\pi/(2n-1)\}$<br>$-2 \cos \{2lp\pi/(2n-1)\}$  | $2 \cos \{l(2p-1) \pi / (2n-1)\}$<br>$2 \cos \{l(2p-1) \pi / (2n-1)\}$                                 | $2 \cos \{2lp\pi/(2n-1)\}$<br>$2 \cos \{2lp\pi/(2n-1)\}$                                                 | $2i \sin (l(2p-1)\pi/(2n-1))$<br>- $2i \sin (l(2p-1)\pi/(2n-1))$                  | $2i \sin (2lp\pi/(2n-1))$<br>- $2i \sin (2lp\pi/(2n-1))$                                    | $-2\cos(l(2p-1)\pi/(2n-1)) -2\cos(l(2p-1)\pi/(2n-1))$                                                 | 0                                  | 0                                                      | 0                                                                        | 0                              | 0                                                                                                       | 0                                                                                  | 0                                                                               | 0                                                                                                                     |
| $H \bigcup_{l \in I} \leq 2n-2;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $G_{i,a} = \int G_{ia,f}^+$                                        | 2 -   |                                                 | 2 -2                                                  | 2           | -2                                            | 2                | $-2\cos{((2l-1)p\pi/(2n-1))}$                                         | $2\cos\{(2l-1)p\pi/(2n-1)\}$                                         | $-2\cos\{(2l-1)p\pi/(2n-1)\}$                               | $2\cos\{(2l-1)(2p-1)\pi/(4n-2)\}$                                                                      | ) $2 \cos \{(2l-1) \rho \pi / (2n-1)\}$                                                                  | $2i \sin \{(2l-1) (2p-1) \pi / (2n-1)\}$                                          | $2i\sin\{(2l-1)(2\phi+1)\pi/(4n-2)\}$                                                       | $2\cos\{(2l-1)(2p-1)\pi/(4n-2)\}$                                                                     | 0                                  | ŏ.                                                     | 0                                                                        | 0                              | õ                                                                                                       | ö                                                                                  | õ                                                                               | õ                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000                                                               | 2 -   |                                                 | $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | -2          | $-\frac{2}{2}$                                | 2 0              | $-2\cos\{(2l-1)p\pi / (2n-1)\}$<br>$2(-1)^{p}$                        | $2\cos\{(2l-1)p\pi/(2n-1)\}$<br>$2(-1)^{p+1}$                        | $-2\cos\{(2l-1)\beta\pi/(2n-1)\}$<br>$2(-1)^{p+1}$          | $2\cos\{(2l-1)(2p-1)\pi/(4n-2)$                                                                        | )) $2 \cos\{(2l-1)p\pi/(2n-1)\}$<br>$2(-1)^p$                                                            | $-2i\sin((2l-1)(2p-1)\pi l(2n-1))$                                                | $-2i\sin\{(2l-1)(2p+1)\pi/(4n-2)\}$                                                         | $2 \cos ((2l-1)(2p-1)\pi/(4n-2))$                                                                     | 0                                  | 0                                                      | 0                                                                        | 0                              | 0                                                                                                       | 0                                                                                  | 0                                                                               | 0<br>- 2i                                                                                                             |
| $ I ONS   \leq l \leq n-1;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gay Gay                                                            | 2 -   |                                                 | -2 -2                                                 | -2          | 2                                             | 2                | $2(-1)^{p}$                                                           | $2(-1)^{p+1}$                                                        | $2(-1)^{p+1}$                                               | 0                                                                                                      | $2(-1)^{p}$                                                                                              | 0                                                                                 | 0                                                                                           | ŏ                                                                                                     | ŏ                                  | 0                                                      | 0                                                                        | 0                              | 0                                                                                                       | 0                                                                                  | - 2i                                                                            | 21                                                                                                                    |
| HI $\leq l \leq n-1;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $G_{1xy}$                                                          | 4 -   | 2 220                                           | -4 -4<br>-2 2                                         | -4          | -2                                            | 4                | $4 \cos \{(2l-1) p\pi/(2n-1)\}$<br>- 2                                | $-4\cos\{(2l-1)p\pi/(2n-1)\}$<br>-2                                  | $-4\cos\{(2l-1)p\pi/(2n-1)\}$                               | 0                                                                                                      | $4 \cos \{(2l-1)p\pi/(2n-1)\}$                                                                           | 0                                                                                 | - 0                                                                                         | 0                                                                                                     | 0                                  | 0                                                      | 0                                                                        | 0                              | 0                                                                                                       | 0                                                                                  | 0                                                                               | 0                                                                                                                     |
| SAC<br>SAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GAY GAY                                                            | 2     | 2 -2                                            |                                                       | -2          | -2                                            | 2                | -2                                                                    | -2                                                                   | 2                                                           | 0                                                                                                      | 2                                                                                                        | 0                                                                                 | 0                                                                                           | 0                                                                                                     | 0                                  | 0                                                      | -2i                                                                      | - 21<br>2i                     | 0                                                                                                       | 0                                                                                  | 0                                                                               | 0                                                                                                                     |
| $O_{N} \leq l \leq n-1;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $G_{i\beta\gamma}$                                                 | 4     | -                                               | -4 4                                                  | - 4         | -4                                            | 4                | $-4\cos(2lp\pi/(2n-1))$                                               | $-4\cos(2lp\pi/(2n-1))$                                              | $4\cos\{2/p\pi/(2n-1)\}$                                    | 0                                                                                                      | $4\cos\{2lp\pi/(2n-1)\}$                                                                                 | 0                                                                                 | 0                                                                                           | 0                                                                                                     | 0                                  | 0                                                      | 0                                                                        | 0                              | 0                                                                                                       | 0                                                                                  | 0                                                                               | 0                                                                                                                     |
| $    = \frac{1}{2} \leq 4n - 2;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    |       | 2 -2                                            | -2 2                                                  | 2           | 2                                             | -2               | $-z\cos\{(2l-1)p\pi/(2n-1)\}$                                         | $-2\cos\{(2l-1)p\pi/(2n-1)\}$                                        | $2\cos((2l-1)p\pi l(2n-1))$                                 | $2\cos\{(2l-1)(2p-1)\pi/(4n-2)\}$                                                                      | )) $2\cos\{(2l-1)p\pi(2n-1)\}$                                                                           |                                                                                   | $2\sin((2l-1)p\pi/(2n-1))$                                                                  | $-2\cos{((2l-1)(2p-1)\pi/(4n-2))}$                                                                    | 0                                  | 0                                                      | 0                                                                        | 0                              | 0                                                                                                       | 0                                                                                  | 0                                                                               | 0                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $D_{(4n-2)h}$                                                      | E     |                                                 |                                                       |             |                                               |                  |                                                                       |                                                                      |                                                             | $A^{2p-1}$                                                                                             | A 20                                                                                                     | $A^{2p-1}BC$<br>$1 \leq p \leq 2n-1$                                              | $A^{2p}BC$<br>$0 \le p \le 2n-2$                                                            |                                                                                                       | $A^{2\eta}C$<br>$0 \leq q \leq n$  |                                                        | $\begin{array}{l} A^{4n-2q-1}C\\ 1\leqslant q\leqslant 2n-1 \end{array}$ |                                | $A^{4n-4-4q}B$                                                                                          | $A^{4n-4q-2}B$<br>$1 \leq q \leq n-1$                                              | $A^{4n-4s+1}B$<br>$1 \le a \le n$                                               | $A^{4n-4q-1}B$<br>$1 \leq q \leq n-1$                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |       |                                                 |                                                       |             |                                               |                  |                                                                       |                                                                      |                                                             |                                                                                                        |                                                                                                          | $1 \ll p \ll 2n - 1$                                                              | $v \approx p \approx zu - z$                                                                |                                                                                                       | v = q = n                          |                                                        | $r \neq q \neq ru - 1$                                                   |                                | $n \leq \lambda \leq n - 1$                                                                             | $1 \approx q \approx n^{-1}$                                                       | $x \ll h \ll u$                                                                 | * ~ A ~ u ~ t                                                                                                         |

| PHILG                                                                                                                                      | PHILOSOPHICAL THE ROYAL A MATHEMATICAL,<br>TRANSACTIONS SOCIETY & ENGINEERING SCIENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L TF<br>S SC                        | PHILOSOPHICAL THE ROYAL A |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------|
| 0,                                                                                                                                         | $\begin{cases} G_{\beta}^{\rho} \\ I_{\beta} \\ E'_{\alpha\beta v} \\ E'_{\alpha\beta v} \\ E'_{\alpha\beta v} \\ E'_{\alpha\beta v} \\ G_{\alpha\beta v} \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sup>2</sup> <sub>1</sub> (O <sub>h</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ĩ                                   |                           |
| Ε                                                                                                                                          | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1\epsilon_1$                       |                           |
|                                                                                                                                            | 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P <sup>±</sup> S <sup>±</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1e <sub>2</sub> 1e                  | REPI                      |
|                                                                                                                                            | -226<br>-226<br>-2222<br>-222<br>-222<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224<br>-224 | : p=51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 1e3                               | RESE                      |
| A<br>B<br>AB                                                                                                                               | $1\\1\\2\\-1\\-1\\1\\2\\-1\\0\\0\\0\\2\\2\\2\\2\\2\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P, P <sup>3</sup><br>Q, P <sup>2</sup> Q<br>PQ, P <sup>3</sup> Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $6c_4$                              | NTATIO                    |
| AC<br>BC<br>ABC                                                                                                                            | $\begin{array}{c} 1\\ 1\\ -1\\ 0\\ 0\\ 1\\ -1\\ 0\\ 0\\ 2\\ -1\\ -1\\ -1\\ -1\\ 0\\ 1\\ 1\\ 1\\ -1\\ -1\\ -1\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PR, P <sup>3</sup> QR <sup>3</sup><br>QR, P <sup>3</sup> R <sup>4</sup><br>PQR, P <sup>3</sup> QR <sup>3</sup><br>P <sup>2</sup> R, P <sup>2</sup> R <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | See                                 | NS OF PO                  |
| $C^4, C$<br>$AC^4$<br>$BC^4$<br>$ABC^4$                                                                                                    | $ \begin{array}{c} 1\\ -1\\ 0\\ 0\\ 1\\ -1\\ 0\\ -2\\ 1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ 1\\ 1 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R <sup>2</sup> , R<br>PR <sup>2</sup> , P <sup>2</sup> QR<br>QR <sup>2</sup> , P <sup>3</sup> QR<br>PQR <sup>2</sup> , P <sup>3</sup> R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $8c_3$                              | OINT GRO                  |
| D<br>ABD<br>C <sup>a</sup> D<br>AC <sup>a</sup> D<br>BCD<br>CD                                                                             | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ -1 \\ 1 \\ -1 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S, S <sup>3</sup><br>PQS, PQS <sup>3</sup><br>R <sup>3</sup> S, R <sup>3</sup> S <sup>3</sup><br>PR <sup>4</sup> S, PR <sup>4</sup> S <sup>3</sup><br>QRS, QRS <sup>3</sup><br>P <sup>3</sup> RS, P <sup>3</sup> RS <sup>3</sup><br>P <sup>4</sup> S, P <sup>2</sup> S <sup>3</sup><br>P <sup>4</sup> QS, P <sup>3</sup> QS <sup>3</sup><br>P <sup>4</sup> R <sup>4</sup> S, P <sup>3</sup> R <sup>2</sup> S <sup>3</sup><br>P <sup>4</sup> R <sup>4</sup> S, P <sup>3</sup> R <sup>2</sup> S <sup>3</sup><br>P <sup>4</sup> QRS, P <sup>3</sup> QRS <sup>3</sup><br>RS, RS <sup>3</sup>                                                                | $24\epsilon_4$                      | UPS                       |
| AD<br>ABCD<br>BC*D                                                                                                                         | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PS, QS <sup>3</sup><br>P <sup>2</sup> QS, P <sup>3</sup> S <sup>3</sup><br>PQRS, PRS <sup>3</sup><br>P <sup>3</sup> RS, P <sup>3</sup> QRS <sup>3</sup><br>QR <sup>3</sup> S, PQR <sup>3</sup> S <sup>3</sup><br>P <sup>3</sup> QR <sup>2</sup> S, P <sup>2</sup> QR <sup>2</sup> S <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                        | $12e_8$                             | 253                       |
| BD<br>ACD<br>ABC®D                                                                                                                         | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | QS, PS <sup>3</sup><br>P <sup>3</sup> S, P <sup>2</sup> QS <sup>3</sup><br>PRS, PQRS <sup>3</sup><br>P <sup>3</sup> QRS, P <sup>3</sup> RS <sup>3</sup><br>PQR <sup>4</sup> S, QR <sup>4</sup> S <sup>3</sup><br>P <sup>2</sup> QR <sup>2</sup> S, P <sup>3</sup> QR <sup>2</sup> S <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                        | $12\epsilon_8$                      |                           |
|                                                                                                                                            | $ \begin{array}{r}1\\1\\2\\-1\\-1\\1\\2\\-1\\1\\2\\-1\\2\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PS <sup>2</sup> , P <sup>3</sup> S <sup>2</sup><br>QS <sup>2</sup> , P <sup>2</sup> QS <sup>2</sup><br>PQS <sup>3</sup> , P <sup>3</sup> QS <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $6e_4$                              |                           |
|                                                                                                                                            | $ \begin{array}{c} 1\\ -1\\ 0\\ 0\\ 1\\ -1\\ -2\\ -1\\ -2\\ 1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PRS <sup>3</sup> , P <sup>3</sup> QR <sup>3</sup> S <sup>3</sup><br>QRS <sup>2</sup> , P <sup>3</sup> R <sup>2</sup> S <sup>2</sup><br>PQRS <sup>3</sup> , P <sup>3</sup> QR <sup>3</sup> S <sup>3</sup><br>P <sup>2</sup> RS <sup>3</sup> , P <sup>3</sup> R <sup>2</sup> S <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                               | $8e_4$                              |                           |
|                                                                                                                                            | $ \begin{array}{r}1\\1\\-1\\0\\0\\1\\1\\-1\\0\\-2\\1\\1\\-2\\1\\1\\-1\\-1\\-1\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R <sup>1</sup> S <sup>3</sup> , RS <sup>3</sup><br>PR <sup>1</sup> S <sup>2</sup> , P <sup>2</sup> QRS <sup>2</sup><br>QR <sup>1</sup> S <sup>3</sup> , P <sup>3</sup> QRS <sup>3</sup><br>PQR <sup>2</sup> S <sup>2</sup> , P <sup>3</sup> RS <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                             | Sec                                 |                           |
| I                                                                                                                                          | $\begin{smallmatrix}&1\\&1\\&2\\&3\\&-1\\&-2\\&-3\\&-0\\&0\\&0\\&0\\&0\\&0\\&0\\&0\\&0\\&2\\&2\\&2\\&-2\\&-4\\&-4\\&-4\\&-4\\&-4\\&-4\\&-4\\&-4\\&-4\\&-4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T<br>$P^2S^2T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ГАВLЕ <b>3</b> (<br>26 <sub>2</sub> |                           |
|                                                                                                                                            | $\begin{smallmatrix}&1\\&1\\&2&3&3\\&-&1&1\\&-&1&2&3&3\\&-&&1&1&2\\&&&0&0&0&0&0\\&&&0&0&0&0&2&2&2&2\\&&&&&-&1&-&1\\&&&&&&-&&&&-\\&&&&&&&&&&$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{P^{2}T}{S^{2}T}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $2e_x$                              | 101124                    |
| AI<br>BI<br>ABI                                                                                                                            | $1 \\ 1 \\ 2 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PT, P <sup>3</sup> T<br>QT, P <sup>2</sup> QT<br>PQT, P <sup>3</sup> QT<br>PS <sup>2</sup> T, P <sup>3</sup> S <sup>2</sup> T<br>QS <sup>3</sup> T, P <sup>2</sup> QS <sup>2</sup> T<br>PQS <sup>2</sup> T, P <sup>3</sup> QS <sup>2</sup> T                                                                                                                                                                                                                                                                                                                                                                                                            | $12e_4$                             |                           |
| ACI<br>BCI<br>ABCI                                                                                                                         | $ \begin{array}{c} 1 \\ 1 \\ -1 \\ 0 \\ 0 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \\ -i \sqrt{3} \\ i \sqrt{3} \\ 0 \\ -i \sqrt{3} \\ i \sqrt{3} \\ 0 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ 1 \end{array} \right) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PRT<br>QRT<br>PQRT<br>P*RT<br>R*S*T<br>PR*S*T<br>QR*S*T<br>PQR*S*T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $8c_6$                              |                           |
|                                                                                                                                            | $1 \\ -1 \\ 0 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \\ i\sqrt{3} \\ -i\sqrt{3} \\ 0 \\ i\sqrt{3} \\ -i\sqrt{3} \\ 0 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $P^{3}QR^{2}T$<br>$P^{3}R^{2}T$<br>$P^{2}QR^{3}T$<br>$RS^{2}T$<br>$P^{2}QRS^{2}T$<br>$P^{3}QRS^{2}T$<br>$P^{3}QRS^{2}T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sc4                                 |                           |
| C <sup>3</sup> I<br>AC <sup>3</sup> I<br>BC <sup>3</sup> I<br>ABC <sup>3</sup> I                                                           | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \\ -i \sqrt{3} \\ i \sqrt{3} \\ -i \sqrt{3} \\ -i \sqrt{3} \\ -1 \\ -1 \\ 1 \\ -1 \\ 1 \\ -1 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R <sup>2</sup> T<br>PR <sup>3</sup> T<br>QR <sup>2</sup> T<br>PQR <sup>2</sup> T<br>PRS <sup>2</sup> T<br>QRS <sup>2</sup> T<br>PQRS <sup>3</sup> T<br>P <sup>2</sup> RS <sup>2</sup> T                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $8e_4$                              |                           |
| CI                                                                                                                                         | $ \begin{array}{c} 1 \\ 1 \\ -1 \\ 0 \\ 0 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RT<br>P <sup>3</sup> QRT<br>P <sup>3</sup> QRT<br>P <sup>3</sup> RT<br>P <sup>3</sup> QR <sup>3</sup> S <sup>3</sup> T<br>P <sup>3</sup> QR <sup>3</sup> S <sup>3</sup> T<br>P <sup>3</sup> QR <sup>3</sup> S <sup>3</sup> T<br>P <sup>3</sup> R <sup>2</sup> S <sup>3</sup> T                                                                                                                                                                                                                                                                                                                                                                          | $8e_6$                              |                           |
| DI<br>ABDI<br>C <sup>3</sup> DI<br>AC <sup>2</sup> DI<br>BCDI<br>CDI                                                                       | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ -1 \\ 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ST, P <sup>4</sup> ST<br>PQST, P <sup>4</sup> QST<br>R <sup>4</sup> ST, P <sup>4</sup> R <sup>4</sup> ST<br>PR <sup>4</sup> ST, P <sup>4</sup> R <sup>3</sup> ST<br>QRST, P <sup>4</sup> QRST<br>P <sup>4</sup> RST, RST<br>S <sup>3</sup> T, P <sup>4</sup> S <sup>3</sup> T<br>PQS <sup>3</sup> T, P <sup>4</sup> QS <sup>3</sup> T<br>R <sup>4</sup> S <sup>3</sup> T, P <sup>3</sup> R <sup>3</sup> S <sup>3</sup> T<br>PR <sup>4</sup> S <sup>3</sup> T, P <sup>3</sup> R <sup>4</sup> S <sup>3</sup> T<br>PR <sup>2</sup> S <sup>3</sup> T, P <sup>3</sup> R <sup>4</sup> S <sup>3</sup> T<br>P <sup>2</sup> RS <sup>3</sup> T, RS <sup>3</sup> T | $24e_4$                             |                           |
| ADI<br>ABCDI<br>BCªDI                                                                                                                      | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PST, P <sup>2</sup> QST<br>PQRST, P <sup>2</sup> RST<br>QR <sup>3</sup> ST, P <sup>3</sup> QR <sup>3</sup> ST<br>QS <sup>3</sup> T, P <sup>3</sup> S <sup>3</sup> T<br>PRS <sup>3</sup> T, P <sup>5</sup> QRS <sup>3</sup> T<br>PQR <sup>4</sup> S <sup>3</sup> T, P <sup>2</sup> QRS <sup>3</sup> T                                                                                                                                                                                                                                                                                                                                                    | $12e_{s}$                           |                           |
| BDI<br>ACDI<br>ABC*DI                                                                                                                      | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ -1 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | QST, P <sup>3</sup> ST<br>PRST, P <sup>3</sup> QRST<br>PQR <sup>3</sup> ST, P <sup>2</sup> QR <sup>3</sup> ST<br>PS <sup>3</sup> T, P <sup>2</sup> QS <sup>3</sup> T<br>PQRS <sup>3</sup> T, P <sup>3</sup> RS <sup>3</sup> T<br>QR <sup>3</sup> S <sup>3</sup> T, P <sup>2</sup> QR <sup>2</sup> S <sup>3</sup> T                                                                                                                                                                                                                                                                                                                                      | $12\epsilon_{\rm s}$                |                           |
| $\begin{array}{l} A^{2}=B^{2}=C^{2}=D^{2}=I^{2}=E\\ BA=AB;CA=BC;CB=ABC\\ DA=BD;DB=AD;DC=C^{2}D;\\ IA=AI;IB=BI;IC=CI;\\ ID=DI. \end{array}$ | $\left\{ \begin{array}{l} \alpha = +1; \ \beta = +1 \\ \alpha = -1; \ \beta = +1 \\ \alpha = +1; \ \beta = -1 \end{array} \right\}$ $\alpha = -1; \ \beta = -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{l} P^{t} = Q^{4} = R^{3} = S^{4} = T^{2} = E \\ P^{2} = Q^{2} \\ QP = P^{3}Q; \ RP = QR; \ RQ = PQR; \\ SP = P^{2}QS; \ SQ = P^{4}S; \ SR = R^{2}S; \\ TP = PT; \ TQ = QT; \ TR = RT; \\ TS = P^{2}S^{3}T \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                   | 192 elements                        |                           |

| Y <sup>AL</sup> A                                          |                                                                                                                               |                                           |                                                        |                                                                                           |                                                                  |                                                                                                                                                                   |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                         |                                                                                                                                                       |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                             |                                           |                                                 |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.0                                                                                                                                                                                                 | 254                                                                                                                                                                                                     | L. L. BO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | YLE AND                                                                                                                                                                                                                                                           | KERIE F                                                                                                                                                                                                                                                                               | GREEN                                                                                                                                                                           |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| THE ROYAL SOCIETY                                          |                                                                                                                               |                                           |                                                        |                                                                                           |                                                                  |                                                                                                                                                                   |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                         |                                                                                                                                                       |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                             | 120.000                                   |                                                 |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                     |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                 |
| TISC                                                       |                                                                                                                               |                                           |                                                        |                                                                                           |                                                                  |                                                                                                                                                                   |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                         |                                                                                                                                                       |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                             | TABLE S                                   | 3 (cont.)                                       |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                     |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                 |
| NSN                                                        |                                                                                                                               | $1\epsilon_1$                             | 1e <sub>2</sub> 1                                      | e <sub>2</sub> 1e <sub>2</sub>                                                            | $6\epsilon_4$                                                    | Se.                                                                                                                                                               | $8\epsilon_3$                                                                                                                           | $24e_z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 126.                                                                                                                                                                                                                                                                      | $12\epsilon_{s}$                                                                                                                                                                                                                                        | 6c4                                                                                                                                                   | 86.                                                                                                                                                                                                                                                                                       | 8e4                                                                                                                                                                                                                                                         | $2e_4$                                    | $2e_4$                                          | 1264                                                                                                                                                                                                                                | $8e_{12}$                                                                                                                                                                                                                         | $8e_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8e12                                                                                                                                                                                                | 8612                                                                                                                                                                                                    | 24e <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1208                                                                                                                                                                                                                                                              | $12e_8$                                                                                                                                                                                                                                                                               | 192 elements                                                                                                                                                                    |
| PHILOSOPHICAL<br>TRANSACTIONS                              | $\mathscr{R}_{k}(O_{h})$                                                                                                      | E                                         | P <sup>2</sup>                                         | 7° P±72                                                                                   | P, P <sup>3</sup><br>Q, P <sup>2</sup> Q<br>PQ, P <sup>3</sup> Q | PR, P <sup>3</sup> QR <sup>2</sup><br>QR, P <sup>3</sup> R <sup>3</sup><br>PQR, P <sup>2</sup> QR <sup>4</sup><br>P <sup>3</sup> R, P <sup>2</sup> R <sup>1</sup> | R <sup>2</sup> , R<br>PR <sup>1</sup> , P <sup>1</sup> QR<br>QR <sup>1</sup> , P <sup>1</sup> QR<br>PQR <sup>2</sup> , P <sup>2</sup> R | S; ST <sup>2</sup><br>PQS; PQST <sup>3</sup><br>R <sup>3</sup> S; R <sup>3</sup> ST <sup>3</sup><br>PR <sup>3</sup> S; PR <sup>4</sup> ST <sup>3</sup><br>QRS; QRST <sup>3</sup><br>P <sup>2</sup> RS; P <sup>2</sup> RST <sup>3</sup><br>P <sup>4</sup> S; P <sup>4</sup> ST <sup>3</sup><br>P <sup>4</sup> QS; P <sup>4</sup> QST <sup>3</sup><br>P <sup>3</sup> R <sup>4</sup> S; P <sup>4</sup> R <sup>3</sup> ST <sup>3</sup><br>P <sup>3</sup> R <sup>4</sup> S; P <sup>4</sup> QRST <sup>3</sup><br>RS; RST <sup>3</sup> | PS<br>P <sup>2</sup> QS<br>PQRS<br>P <sup>3</sup> RS<br>QR <sup>3</sup> S<br>P <sup>3</sup> QR <sup>2</sup> S<br>P <sup>3</sup> QR <sup>2</sup> S<br>P <sup>3</sup> QST <sup>2</sup><br>P <sup>3</sup> RST <sup>2</sup><br>P <sup>3</sup> QR <sup>3</sup> ST <sup>2</sup> | QS<br>P <sup>a</sup> S<br>PRS<br>PQRS<br>PQR <sup>a</sup> S<br>P <sup>a</sup> QRS<br>QST <sup>a</sup><br>P <sup>a</sup> ST <sup>a</sup><br>PST <sup>a</sup><br>PST <sup>a</sup><br>PQR <sup>a</sup> ST <sup>a</sup><br>PQR <sup>a</sup> ST <sup>a</sup> | PT <sup>2</sup> ,P <sup>2</sup> T <sup>2</sup><br>QT <sup>2</sup> ,P <sup>2</sup> QT <sup>2</sup><br>PQT <sup>2</sup> ,P <sup>2</sup> QT <sup>2</sup> | PRT <sup>2</sup> , P <sup>3</sup> QR <sup>2</sup> T <sup>2</sup><br>QRT <sup>3</sup> , P <sup>3</sup> R <sup>3</sup> T <sup>3</sup><br>PQRT <sup>3</sup> , P <sup>3</sup> QR <sup>2</sup> T <sup>2</sup><br>P <sup>3</sup> RT <sup>3</sup> , P <sup>2</sup> R <sup>4</sup> T <sup>2</sup> | R <sup>a</sup> T <sup>a</sup> , RT <sup>2</sup><br>PR <sup>a</sup> T <sup>a</sup> , P <sup>1</sup> QRT <sup>2</sup><br>QR <sup>a</sup> T <sup>2</sup> , P <sup>3</sup> QRT <sup>2</sup><br>PQR <sup>a</sup> T <sup>2</sup> , P <sup>3</sup> RT <sup>3</sup> | <i>T</i> , <i>T</i> <sup>3</sup>          | P <sup>2</sup> T, P <sup>2</sup> T <sup>2</sup> | PT, P <sup>3</sup> T <sup>3</sup><br>QT, P <sup>2</sup> QT <sup>3</sup><br>PQT, P <sup>2</sup> QT <sup>3</sup><br>PT <sup>3</sup> , P <sup>3</sup> T<br>QT <sup>3</sup> , P <sup>2</sup> QT<br>PQT <sup>3</sup> , P <sup>2</sup> QT | PRT, P <sup>3</sup> QR <sup>2</sup> T <sup>3</sup><br>QRT, P <sup>3</sup> R <sup>2</sup> T <sup>3</sup><br>PQRT, P <sup>2</sup> QR <sup>3</sup> T <sup>3</sup><br>P <sup>2</sup> RT, P <sup>2</sup> R <sup>4</sup> T <sup>3</sup> | PRT <sup>3</sup> , P <sup>3</sup> QR <sup>4</sup> T<br>QRT <sup>3</sup> , P <sup>3</sup> R <sup>3</sup> T<br>PQRT <sup>3</sup> , P <sup>3</sup> QR <sup>4</sup> T<br>P <sup>2</sup> RT <sup>3</sup> , P <sup>3</sup> R <sup>2</sup> T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R <sup>2</sup> T, RT <sup>3</sup><br>PR <sup>3</sup> T, P <sup>2</sup> QRT <sup>3</sup><br>QR <sup>2</sup> T, P <sup>3</sup> QRT <sup>3</sup><br>PQR <sup>2</sup> T, P <sup>3</sup> RT <sup>3</sup> | R <sup>‡</sup> T <sup>3</sup> , RT<br>PR <sup>1</sup> T <sup>3</sup> , P <sup>1</sup> QRT<br>QR <sup>2</sup> T <sup>3</sup> , P <sup>3</sup> QRT<br>PQR <sup>1</sup> T <sup>3</sup> , P <sup>3</sup> RT | ST; ST <sup>3</sup><br>PQST; PQST <sup>3</sup><br>R <sup>3</sup> ST; R <sup>4</sup> ST <sup>3</sup><br>PR <sup>3</sup> ST; PR <sup>3</sup> ST <sup>3</sup><br>P <sup>2</sup> RST; P <sup>2</sup> RST <sup>3</sup><br>P <sup>3</sup> RST; P <sup>2</sup> RST <sup>3</sup><br>P <sup>3</sup> QST; P <sup>3</sup> QST <sup>3</sup><br>P <sup>3</sup> R <sup>3</sup> ST; P <sup>3</sup> R <sup>3</sup> ST <sup>3</sup><br>P <sup>2</sup> QRST; P <sup>3</sup> R <sup>4</sup> ST <sup>3</sup><br>P <sup>2</sup> QRST; P <sup>2</sup> QRST <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PST<br>P <sup>2</sup> QST<br>PQRST<br>P <sup>3</sup> RST<br>QR <sup>3</sup> ST<br>P <sup>3</sup> QR <sup>3</sup> ST<br>P <sup>4</sup> QST <sup>3</sup><br>PQRST <sup>3</sup><br>QR <sup>3</sup> ST <sup>3</sup><br>P <sup>3</sup> QR <sup>3</sup> ST <sup>3</sup> | QST<br>P <sup>3</sup> ST<br>PRST<br>PQR <sup>3</sup> ST<br>P <sup>3</sup> QRST<br>P <sup>3</sup> ST <sup>3</sup><br>PRST <sup>3</sup><br>P <sup>3</sup> QRST <sup>3</sup><br>PQR <sup>3</sup> ST <sup>3</sup><br>PQR <sup>3</sup> ST <sup>3</sup><br>P <sup>2</sup> QRST <sup>3</sup> | $\begin{array}{l} P^{4}=Q^{4}=R^{3}=S^{2}=T^{4}={}_{i}E\\ P^{2}=Q^{2}\\ QP=P^{2}Q;RP=QR;RQ=PQR;\\ SP=P^{2}QS;SQ=P^{3}S;SR=R^{2}S;\\ TP=PT;TQ=QT;TR=RT;\\ TS=ST^{3} \end{array}$ |
| ALA MATHEMATICAL,<br>PHYSICAL<br>& ENGINEERING<br>SCIENCES | $A_{1s}$<br>$A_{ss}$<br>$E_{s}$<br>$T_{1s}$<br>$A_{1s}$<br>$A_{1s}$<br>$E_{s}$<br>$T_{1s}$<br>$T_{1s}$<br>$T_{1s}$            | 1<br>2<br>3<br>3<br>1<br>1<br>2<br>3<br>3 | 1 2 3 3 1 1 2 3 3 .                                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                      | 1<br>-1<br>-1<br>1<br>2<br>-1<br>-1<br>-1<br>-1                  |                                                                                                                                                                   | 1<br>-1<br>0<br>1<br>1<br>-1<br>0<br>0                                                                                                  | $     \begin{array}{r}       1 \\       -1 \\       0 \\       -1 \\       1 \\       -1 \\       0 \\       -1 \\       1 \\       -1 \\       0 \\       -1 \\       1   \end{array} $                                                                                                                                                                                                                                                                                                                                        | $     \begin{array}{r}       1 \\       -1 \\       0 \\       1 \\       -1 \\       1 \\       -1 \\       0 \\       1 \\       -1 \\       -1 \\       0 \\       1   \end{array} $                                                                                   | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 1 \\ -1 \\ 0 \\ 1 \\ -1 \end{array} $                                                                                                                                                                     | $ \begin{array}{r} 1 \\ 2 \\ -1 \\ -1 \\ 1 \\ 2 \\ -1 \\ -1 \\ -1 \\ -1 \\ \end{array} $                                                              | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \end{array} $                                                                                                                                                                                                                   | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{array} $                                                                                                                                                                                | 1<br>2<br>3<br>-1<br>-1<br>-2<br>-3<br>-3 | 1<br>2<br>3<br>3<br>-1<br>-1<br>-2<br>-3<br>-3  | $ \begin{array}{r}1\\1\\2\\-1\\-1\\-1\\-1\\-2\\1\\1\end{array}$                                                                                                                                                                     | $ \begin{array}{r} 1 \\ -1 \\ 0 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                               | $     \begin{array}{c}       1 \\       1 \\       -1 \\       0 \\       0 \\       -1 \\       -1 \\       1 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\       0 \\  $ |                                                                                                                                                                                                     | $ \begin{array}{r} 1 \\ -1 \\ 0 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                     | $ \begin{array}{r}     1 \\     -1 \\     0 \\     -1 \\     1 \\     -1 \\     1 \\     0 \\     1 \\     -1 \\     -1 \\     1 \\     0 \\     1 \\     -1 \\     1 \\     0 \\     1 \\     -1 \\     1 \\     0 \\     1 \\     -1 \\     1 \\     0 \\     1 \\     -1 \\     1 \\     0 \\     1 \\     -1 \\     1 \\     0 \\     1 \\     -1 \\     1 \\     0 \\     1 \\     -1 \\     1 \\     0 \\     1 \\     -1 \\     1 \\     0 \\     1 \\     -1 \\     1 \\     0 \\     1 \\     -1 \\     1 \\     0 \\     1 \\     -1 \\     1 \\     0 \\     1 \\     -1 \\     1 \\     0 \\     1 \\     -1 \\     1 \\     0 \\     1 \\     -1 \\     1 \\     0 \\     1 \\     -1 \\     1 \\     0 \\     1 \\     -1 \\     1 \\     0 \\     1 \\     -1 \\     1 \\     0 \\     1 \\     -1 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     0 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\     1 \\$ | $1 \\ -1 \\ 0 \\ 1 \\ -1 \\ -1 \\ 1 \\ 0 \\ -1 \\ 1 \\ 1$                                                                                                                                                                                                         | $     \begin{array}{r}       1 \\       -1 \\       0 \\       1 \\       -1 \\       -1 \\       1 \\       0 \\       -1 \\       1 \\       1     \end{array} $                                                                                                                    | $\alpha = +1; \beta = +1$                                                                                                                                                       |
| THE ROY/<br>SOCIETY                                        | $T_{2u}$ $G_{av}$ | 4 4 2 2 2 2 2 2 2                         | -4<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2     | $   \begin{array}{r}     2 & -2 \\     2 & -2   \end{array} $                             | 000000000000000000000000000000000000000                          | -1<br>-1<br>1<br>1<br>2                                                                                                                                           | 1<br>-1<br>-1<br>-1<br>-1<br>2                                                                                                          | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>$i\sqrt{2}$<br>$-i\sqrt{2}$<br>$i\sqrt{2}$<br>$-i\sqrt{2}$<br>0                                                                                                                                                                                                      | $0 \\ -i\sqrt{2} \\ i\sqrt{2} \\ -i\sqrt{2} \\ i\sqrt{2} \\ i\sqrt{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                 | 0<br>0<br>0<br>0<br>0<br>2                                                                                                                            | -1<br>-1<br>1<br>1<br>-2                                                                                                                                                                                                                                                                  | $1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -2 \\ -2 \\ -$                                                                                                                                                                                                          | -4<br>2<br>-2<br>-2<br>0                  | -4<br>-2<br>-2<br>2<br>2<br>0                   | 000000000000000000000000000000000000000                                                                                                                                                                                             | -1 1 1 1 -1 -1 0                                                                                                                                                                                                                  | -1<br>1<br>1<br>-1<br>-1<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1<br>-1<br>-1<br>-1<br>1<br>0                                                                                                                                                                      |                                                                                                                                                                                                         | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0 \\ i\sqrt{2} \\ -i\sqrt{2} \\ -i\sqrt{2} \\ i\sqrt{2} \\ i\sqrt{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                           | $0 \\ -i\sqrt{2} \\ i\sqrt{2} \\ i\sqrt{2} \\ -i\sqrt{2} \\ -i\sqrt{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                              | $\alpha = -1; \beta = +1$                                                                                                                                                       |
| PHILOSOPHICAL<br>TRANSACTIONS                              | 1.28                                                                                                                          | 2<br>6<br>4 -<br>4 -                      | $     \begin{array}{ccccccccccccccccccccccccccccccccc$ | $   \begin{array}{ccc}     2 & -2 \\     6 & -6 \\     4 & 4 \\     4 & 4   \end{array} $ | 2<br>2<br>2<br>2<br>0<br>0<br>0                                  | -1<br>-1<br>0<br>2<br>-1<br>-1                                                                                                                                    | -1<br>-1<br>0<br>-2<br>1<br>1                                                                                                           | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                          | 0000000                                                                                                                                                                                                                                                 | 2<br>2<br>-2<br>0<br>0<br>0                                                                                                                           |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                             | 0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0                                | 0<br>0<br>0<br>0<br>0                                                                                                                                                                                                               | $-\sqrt{3}$<br>$\sqrt{3}$<br>0<br>$-\sqrt{3}$<br>$\sqrt{3}$                                                                                                                                                                       | $\sqrt{3}$<br>$-\sqrt{3}$<br>0<br>$\sqrt{3}$<br>$-\sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                     | $-\sqrt{3}$<br>$\sqrt{3}$<br>0<br>$\sqrt{3}$<br>$-\sqrt{3}$<br>$-\sqrt{3}$                                                                                                                              | 0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                             | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                      | $ \left. \begin{array}{l} \alpha = +1; \ \beta = -1 \\ \\ \alpha = -1; \ \beta = -1 \end{array} \right. $                                                                       |
| PHIL                                                       | 0,                                                                                                                            | E                                         |                                                        |                                                                                           | A<br>B<br>AB                                                     | AC<br>AC <sup>a</sup><br>ABC                                                                                                                                      | C <sup>2</sup> , C<br>AC <sup>3</sup><br>BC <sup>2</sup><br>ABC <sup>3</sup>                                                            | D<br>ABD<br>CªD<br>ACªD<br>BCD<br>CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AD<br>ABCD<br>BCªD                                                                                                                                                                                                                                                        | BD<br>ACD<br>ABCªD                                                                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                             | I                                         |                                                 | AI<br>BI<br>ABI                                                                                                                                                                                                                     | ACI<br>BCI<br>ABCI                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C <sup>a</sup> I<br>AC <sup>a</sup> I<br>BC <sup>a</sup> I<br>ABC <sup>a</sup> I                                                                                                                    | CI                                                                                                                                                                                                      | DI<br>ABDI<br>CªDI<br>ACªDI<br>BCDI<br>CDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ADI<br>ABCDI<br>BCªDI                                                                                                                                                                                                                                             | BDI<br>ACDI<br>ABCªDI                                                                                                                                                                                                                                                                 | $\begin{array}{l} A^2=B^2=C^3=D^2=I^2=E\\ BA=AB;CA=BC;CB=ABC;\\ DA=BD;DB=AD;DC=C^2D;\\ IA=AI;IB=BI;IC=CI;\\ ID=DI \end{array}$                                                  |

| TRA 0                                                                               | Gaad                                                                        |                                                                                     | $\operatorname{HO}\left\{ \begin{smallmatrix} G_{a_{u}}^{G_{a_{u}}} \\ G_{a_{u}} \end{smallmatrix} \right\}$ |                                                              | E,                |                                   | ATHEMATICAL<br>IVSICAL<br>ENGINEERING<br>ILENCES<br>L L T T T<br>L T T T T | PHILOSOPHIC<br>TRANSACTION<br>OF<br>OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1000        | E RO<br>CIET | THE ROYAL<br>SOCIETY |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------------------|
| E                                                                                   | $   \begin{array}{r}     4 & -4 \\     4 & -4 \\     4 & -4   \end{array} $ | 2 2<br>2 2<br>2 2<br>6 6                                                            | $   \begin{array}{rrr}     2 & -2 \\     2 & -2 \\     2 & -2   \end{array} $                                | $\begin{array}{rrrr} 4 & -4 \\ 4 & -4 \\ 2 & -2 \end{array}$ | 2 2<br>3 3<br>3 3 | 1 1 1                             | $     1 1 \\     2 2 \\     3 3 \\     3 9 $                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |              | RE                   |
|                                                                                     | -4 4                                                                        | -2 -2                                                                               | $\begin{array}{ccc} 2 & -2 \\ 2 & -2 \\ 2 & -2 \end{array}$                                                  | $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$        | 2 2<br>3 3<br>3 3 |                                   | $     \begin{array}{cccc}       1 & 1 \\       2 & 2 \\       3 & 3 \\       3 & 2   \end{array} $                                | 1e <sub>2</sub> 1e <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |              | PRESE                |
| 4                                                                                   | 0<br>0<br>0                                                                 | 2<br>2<br>2<br>2<br>2                                                               | 0<br>0<br>0                                                                                                  | 0                                                            | $2 \\ -1 \\ -1$   | 1                                 | 1<br>2<br>-1                                                                                                                      | $P, P^3$<br>$Q, P^2Q$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |              | NTATION              |
| AC<br>BC                                                                            | 2<br>-1<br>-1                                                               |                                                                                     | 1 1 1                                                                                                        | -1<br>-1                                                     | -1<br>0<br>0      | 1                                 | 1<br>-1<br>0                                                                                                                      | 863<br>PR, P <sup>3</sup> QR <sup>2</sup><br>QR, P <sup>3</sup> R <sup>3</sup><br>PQR, P <sup>2</sup> QR <sup>2</sup><br>P <sup>2</sup> R, P <sup>2</sup> R <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.          |              | IS OF POINT          |
| C <sup>2</sup> , C<br>AC <sup>2</sup><br>BC <sup>3</sup><br>ABC <sup>2</sup>        | -2<br>1<br>1                                                                | $     \begin{array}{r}       2 \\       -1 \\       -1 \\       0     \end{array} $ | -1<br>-1<br>-1                                                                                               | 1<br>1<br>-1                                                 | -1<br>0<br>0      | 1                                 | 1<br>-1<br>0                                                                                                                      | 863<br>R <sup>2</sup> , R<br>PR <sup>2</sup> , P <sup>2</sup> QR<br>QR <sup>2</sup> , P <sup>3</sup> QR<br>PQR <sup>2</sup> , P <sup>3</sup> R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8-          |              | r groups             |
| D<br>ABD<br>C <sup>a</sup> D<br>AC <sup>4</sup> D<br>BCD<br>CD                      | 0<br>0<br>0                                                                 | 0<br>0<br>0                                                                         | 0<br>0<br>0                                                                                                  | 0<br>0                                                       | -1<br>1           | 1<br>-1                           | -1<br>0<br>-1                                                                                                                     | 24e4<br>S, S <sup>3</sup><br>PQS, PQS <sup>3</sup><br>R <sup>a</sup> S, R <sup>a</sup> S <sup>3</sup><br>PR <sup>a</sup> S, PR <sup>a</sup> S <sup>3</sup><br>QRS, QRS <sup>3</sup><br>P <sup>a</sup> RS, P <sup>a</sup> RS <sup>3</sup><br>P <sup>a</sup> S, P <sup>a</sup> S <sup>3</sup><br>P <sup>a</sup> QS, P <sup>a</sup> QS <sup>3</sup><br>P <sup>a</sup> R <sup>3</sup> S, P <sup>a</sup> R <sup>3</sup> S <sup>3</sup><br>P <sup>a</sup> QRS, P <sup>a</sup> QRS <sup>3</sup><br>P <sup>a</sup> QRS, P <sup>a</sup> QRS <sup>3</sup><br>P <sup>a</sup> QRS, RS <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 04-         |              | 255                  |
| AD                                                                                  | 0<br>0<br>0                                                                 | 0<br>0<br>0                                                                         | $-i\sqrt{2}$<br>$i\sqrt{2}$<br>$-i\sqrt{2}$                                                                  | 0<br>0<br>i√2                                                | 0<br>1<br>-1      | 1<br>-1                           | -1<br>0<br>1                                                                                                                      | 12e <sub>n</sub><br>PS<br>P <sup>4</sup> QS<br>P <sup>3</sup> RS<br>QR <sup>3</sup> S<br>P <sup>3</sup> QR <sup>2</sup> S<br>PS <sup>3</sup><br>P <sup>4</sup> QR <sup>3</sup><br>P <sup>3</sup> QR <sup>3</sup> S<br>P <sup>3</sup> RS <sup>3</sup><br>QR <sup>3</sup> S <sup>3</sup><br>P <sup>3</sup> QR <sup>3</sup> S <sup>3</sup> | 10-         |              |                      |
| BD                                                                                  | 0<br>0<br>0                                                                 | 0<br>0<br>0                                                                         | $i\sqrt{2}$<br>$-i\sqrt{2}$<br>$i\sqrt{2}$                                                                   |                                                              | 0<br>1<br>-1      | -1<br>-1                          | -1<br>0<br>1<br>-1                                                                                                                | 12e <sub>8</sub><br>QS <sup>3</sup><br>PRS <sup>3</sup><br>PRS <sup>3</sup><br>PQR <sup>3</sup> S<br>PQR <sup>3</sup> S<br>P <sup>3</sup> QR <sup>2</sup> S <sup>3</sup><br>PS<br>PRS<br>P <sup>3</sup> QR <sup>3</sup> S<br>PQR <sup>3</sup> S<br>PQR <sup>3</sup> S<br>P <sup>2</sup> QR <sup>3</sup> S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10-         |              |                      |
|                                                                                     | 0<br>0<br>0                                                                 | -2<br>-2<br>-2<br>2                                                                 | 0<br>0<br>0                                                                                                  | 0<br>0<br>0                                                  | $-1 \\ -1$        | 1                                 | 1<br>1<br>2<br>-1<br>-1                                                                                                           | 6c,<br>PS <sup>3</sup> , P <sup>2</sup> S <sup>3</sup><br>QS <sup>2</sup> , P <sup>2</sup> QS <sup>2</sup><br>PQS <sup>2</sup> , P <sup>2</sup> QS <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |              |                      |
|                                                                                     | -2<br>1<br>1                                                                | $-2 \\ 1 \\ 1 \\ 0$                                                                 | 1<br>1<br>1                                                                                                  | -1<br>-1                                                     | -1<br>0<br>0      | 1 1                               | 1<br>-1<br>0                                                                                                                      | 866<br>PRS <sup>2</sup> , P <sup>3</sup> QR <sup>2</sup> S <sup>2</sup><br>QRS <sup>3</sup> , P <sup>3</sup> R <sup>3</sup> S <sup>2</sup><br>PQRS <sup>2</sup> , P <sup>2</sup> QR <sup>2</sup> S <sup>2</sup><br>P <sup>2</sup> RS <sup>2</sup> , P <sup>2</sup> R <sup>2</sup> S <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |              |                      |
|                                                                                     | $     \begin{array}{r}       2 \\       -1 \\       -1     \end{array} $    | -2 1 1 0                                                                            | -1<br>-1<br>-1                                                                                               | 1                                                            | -1<br>0<br>0      | 1                                 | -1<br>0                                                                                                                           | 86<br>R <sup>4</sup> S <sup>2</sup> , RS <sup>4</sup><br>PR <sup>3</sup> S <sup>3</sup> , P <sup>3</sup> QRS <sup>2</sup><br>QR <sup>2</sup> S <sup>2</sup> , P <sup>3</sup> QRS <sup>2</sup><br>PQR <sup>3</sup> S <sup>3</sup> , P <sup>3</sup> RS <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |              |                      |
| I                                                                                   | 0<br>0<br>0                                                                 | 0<br>0<br>0                                                                         | 2<br>- 2<br>- 2                                                                                              | 4<br>-4<br>2                                                 | -2<br>-3<br>-3    | -1<br>-1                          | 1 2 3                                                                                                                             | 2e <sub>k</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |              |                      |
|                                                                                     | 0<br>0<br>0                                                                 | 0<br>0<br>0                                                                         | -2<br>2<br>2                                                                                                 | -4<br>4<br>-2                                                | -2<br>-3<br>-3    | -1<br>-1                          | 1 2 3 2                                                                                                                           | 2¢4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E 3 (cont.) |              |                      |
| AI<br>BI                                                                            | 0<br>0<br>0                                                                 | 0<br>0<br>0                                                                         | 0<br>0<br>0                                                                                                  | 0                                                            | -2<br>1<br>1      | -1                                | 1<br>2<br>-1                                                                                                                      | 12e4<br>PT, P <sup>3</sup> S <sup>3</sup> T<br>QT, P <sup>2</sup> QS <sup>2</sup> T<br>PQT, P <sup>2</sup> QS <sup>2</sup> T<br>PS <sup>2</sup> T, P <sup>3</sup> T<br>QS <sup>3</sup> T, P <sup>2</sup> QT<br>PQS <sup>2</sup> T, P <sup>2</sup> QT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |              |                      |
| ACI<br>BCI<br>ABCI                                                                  | $-\frac{0}{\sqrt{3}}$                                                       | 0<br>- √3<br>√3<br>0                                                                | 1<br>-1<br>-1                                                                                                | -1                                                           | 1<br>0<br>0       | -1<br>-1                          | 1<br>-1<br>0                                                                                                                      | 8e <sub>13</sub><br>PRT, P <sup>3</sup> QR <sup>3</sup> S <sup>3</sup> T<br>QRT, P <sup>3</sup> R <sup>3</sup> S <sup>3</sup> T<br>PQRT, P <sup>2</sup> QR <sup>2</sup> S <sup>3</sup> T<br>P <sup>2</sup> RT, P <sup>2</sup> R <sup>3</sup> S <sup>3</sup> T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |              |                      |
|                                                                                     |                                                                             | $-\sqrt{3}$                                                                         | 1<br>-1<br>-1                                                                                                | -1                                                           | 1<br>0<br>0       | -1<br>-1                          | 1<br>-1<br>0                                                                                                                      | 8e <sub>13</sub><br>PRS <sup>3</sup> T, P <sup>3</sup> QR <sup>3</sup> T<br>QRS <sup>3</sup> T, P <sup>3</sup> R <sup>3</sup> T<br>PQRS <sup>3</sup> T, P <sup>2</sup> QR <sup>3</sup> T<br>P <sup>2</sup> RS <sup>3</sup> T, P <sup>2</sup> R <sup>3</sup> T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |              |                      |
| C <sup>a</sup> I<br>AC <sup>a</sup> I                                               | 0<br>- √3<br>√3                                                             | $-\frac{0}{\sqrt{3}}$                                                               | -1<br>1<br>1                                                                                                 | 1<br>-1<br>-1                                                | 1<br>0<br>0       | -1<br>-1                          | 1<br>1<br>-1<br>0                                                                                                                 | 8¢13<br>R <sup>1</sup> T, RS <sup>1</sup> T<br>PR <sup>2</sup> T, P <sup>2</sup> QRS <sup>2</sup> T<br>QR <sup>3</sup> T, P <sup>3</sup> QRS <sup>3</sup> T<br>PQR <sup>3</sup> T, P <sup>3</sup> RS <sup>3</sup> T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |              |                      |
| CI                                                                                  | $ \begin{array}{c} 0 \\ \sqrt{3} \\ -\sqrt{3} \end{array} $                 | $-\frac{0}{\sqrt{3}}$                                                               | -1<br>1<br>1                                                                                                 | 1<br>-1<br>-1                                                | 1<br>0<br>0       | -1<br>-1                          | 1<br>1<br>-1<br>0                                                                                                                 | 8611<br>R <sup>3</sup> S <sup>3</sup> T, RT<br>PR <sup>3</sup> S <sup>3</sup> T, P <sup>2</sup> QRT<br>QR <sup>3</sup> S <sup>3</sup> T, P <sup>3</sup> QRT<br>PQR <sup>3</sup> S <sup>2</sup> T, P <sup>3</sup> RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |              |                      |
| DI<br>ABDI                                                                          | 0<br>0<br>0                                                                 | 0<br>0<br>0                                                                         | 0<br>0<br>0                                                                                                  | 0                                                            | 0<br>1<br>-1      | -1                                | -1<br>0<br>-1                                                                                                                     | 24e4<br>ST,S <sup>3</sup> T<br>PQST,PQS <sup>3</sup> T<br>R <sup>3</sup> ST,R <sup>3</sup> S <sup>3</sup> T<br>PR <sup>3</sup> ST,PR <sup>3</sup> S <sup>3</sup> T<br>QRST,QRS <sup>3</sup> T<br>P <sup>3</sup> RST,P <sup>3</sup> RS <sup>3</sup> T<br>P <sup>3</sup> RST,P <sup>3</sup> QS <sup>3</sup> T<br>P <sup>3</sup> RST,P <sup>3</sup> QS <sup>3</sup> T<br>P <sup>3</sup> R <sup>3</sup> ST,P <sup>3</sup> R <sup>3</sup> S <sup>3</sup> T<br>P <sup>3</sup> R <sup>3</sup> ST,P <sup>3</sup> R <sup>3</sup> S <sup>3</sup> T<br>P <sup>3</sup> R <sup>3</sup> ST,P <sup>3</sup> QRS <sup>3</sup> T<br>RST,RS <sup>3</sup> T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                      |
| ADI                                                                                 | 0<br>0<br>0                                                                 | 0<br>0<br>0                                                                         | $-i\sqrt{2}$<br>$-i\sqrt{2}$<br>$-i\sqrt{2}$<br>$i\sqrt{2}$                                                  | 0<br>0<br>i√2                                                | $-\frac{0}{1}$    | -1<br>1                           | -1<br>0<br>1                                                                                                                      | 12e <sub>8</sub><br>PST<br>P <sup>2</sup> QST<br>PQRST<br>P <sup>3</sup> RST<br>QR <sup>2</sup> ST<br>P <sup>3</sup> QR <sup>3</sup> ST<br>P <sup>2</sup> QS <sup>3</sup> T<br>P <sup>2</sup> QS <sup>3</sup> T<br>P <sup>3</sup> RS <sup>3</sup> T<br>QR <sup>4</sup> S <sup>3</sup> T<br>P <sup>3</sup> QR <sup>4</sup> ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10          |              |                      |
| BDI                                                                                 | 0<br>0<br>0                                                                 | 0<br>0<br>0                                                                         | $-i\sqrt{2}$<br>$i\sqrt{2}$<br>$i\sqrt{2}$<br>$-i\sqrt{2}$                                                   | 0<br>0<br>-1/2                                               | 0<br>-1<br>1      | -1<br>-1<br>1                     |                                                                                                                                   | 12e <sub>8</sub><br>QS <sup>3</sup> T<br>P <sup>3</sup> RS <sup>3</sup> T<br>P <sup>3</sup> QRS <sup>3</sup> T<br>P <sup>3</sup> QR <sup>3</sup> S <sup>3</sup> T<br>P <sup>3</sup> QR <sup>3</sup> ST<br>P <sup>3</sup> QR <sup>3</sup> ST<br>P <sup>3</sup> RST<br>P <sup>3</sup> QRST<br>P <sup>2</sup> QR <sup>3</sup> ST<br>P <sup>2</sup> QR <sup>3</sup> S <sup>3</sup> T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |              |                      |
| $A^{\pm} = B^{\pm} = C^{\pm} = D^{\pm} = I^{\pm} = E$<br>BA = AB; CA = BC; CB = ABC | $\left.\right\} \alpha = -1; \beta = -1$                                    | $\alpha = +1; \beta = -1$                                                           | $\alpha = -1; \beta = +1$                                                                                    | )                                                            | J                 | $\rangle \alpha = +1; \beta = +1$ |                                                                                                                                   | 192 elements<br>$P^4 = Q^4 = R^a = S^4 = T^4 = E$<br>$P^2 = Q^2; S^2 = T^2$<br>$QP = P^3Q; RP = QR; RQ = PQR$<br>$SP = P^2QS; SQ = P^3S; SR = R^3S$<br>TP = PT; TQ = QT; TR = RT<br>$TS = S^aT$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100.1       |              |                      |

| THE ROYAL A<br>Society A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                         |                                                                                                                                                              |                                 |                                                                                                                                                                                 |                                                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                    | Si                                                                                                                                           |                                                                                                                                              |                                                                                                                                                         |                                                                                                                                                                                               |                                                                                                                                                                                                                    |                                                                                                                                                                                                 |                                                                                                                                                                                                                       | 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L. L. BOYL                                                                                                                                                                                                                                                                                                                                              | E AND KERIE                                                                                                                                                                                                                                                                                                                                                          | F. GREEN                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                         |                                                                                                                                                              |                                 |                                                                                                                                                                                 |                                                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                   | TABLE 3                                                                                                                                                                                                                                                            | (cont.)                                                                                                                                      |                                                                                                                                              |                                                                                                                                                         |                                                                                                                                                                                               |                                                                                                                                                                                                                    |                                                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                             |
| PHILOSOPHICAL<br>TRANSACTIONS<br>OF<br>OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 161<br> | 163<br>P2               | 1e <sub>1</sub> 1<br>S <sup>2</sup> P                                                                                                                        |                                 | 664<br>P, P <sup>3</sup><br>Q, P <sup>3</sup> Q<br>PQ, P <sup>3</sup> Q                                                                                                         | 864<br>PR, P <sup>3</sup> QR <sup>2</sup><br>QR, P <sup>3</sup> R <sup>2</sup><br>PQR, P <sup>3</sup> QR <sup>2</sup><br>P <sup>2</sup> R, P <sup>2</sup> R <sup>2</sup>         | Seg<br>R <sup>0</sup> , R<br>PR <sup>0</sup> , P <sup>2</sup> QR<br>QR <sup>0</sup> , P <sup>2</sup> QR<br>PQR <sup>2</sup> , P <sup>3</sup> R | 24e4<br>S,S <sup>3</sup><br>PQS, PQS <sup>3</sup><br>R <sup>4</sup> S, R <sup>4</sup> S <sup>9</sup><br>PR <sup>3</sup> S, PR <sup>3</sup> S <sup>9</sup><br>QRS, QRS <sup>3</sup><br>P <sup>2</sup> RS, P <sup>2</sup> RS <sup>3</sup><br>P <sup>3</sup> QS, P <sup>3</sup> QS <sup>3</sup><br>P <sup>3</sup> QS, P <sup>3</sup> QS <sup>3</sup><br>P <sup>3</sup> R <sup>4</sup> S, P <sup>2</sup> R <sup>3</sup> S <sup>3</sup><br>P <sup>3</sup> QRS, P <sup>2</sup> QRS <sup>3</sup><br>P <sup>3</sup> QRS, P <sup>2</sup> QRS <sup>3</sup><br>RS, RS <sup>3</sup> | 12e <sub>s</sub><br>PS <sup>3</sup><br>P <sup>3</sup> QS <sup>3</sup><br>P <sup>3</sup> RS <sup>3</sup><br>QR <sup>2</sup> S <sup>3</sup><br>P <sup>3</sup> QR <sup>2</sup> S <sup>3</sup><br>P <sup>3</sup> QR <sup>2</sup> S <sup>3</sup><br>P <sup>3</sup> QS<br>P <sup>4</sup> QS<br>P <sup>4</sup> QS<br>P <sup>3</sup> RS<br>QR <sup>4</sup> S<br>P <sup>3</sup> QR <sup>2</sup> S | 12e <sub>8</sub><br>QS<br>P <sup>3</sup> S<br>PRS<br>PQR <sup>3</sup> S<br>P <sup>2</sup> QR <sup>3</sup> S<br>P <sup>3</sup> QR <sup>3</sup> S<br>PRS <sup>3</sup><br>P <sup>3</sup> QRS <sup>3</sup><br>PQR <sup>5</sup> S<br>P <sup>3</sup> QR <sup>5</sup> S<br>P <sup>3</sup> QR <sup>5</sup> S <sup>3</sup> | 664<br>PS <sup>2</sup> , P <sup>3</sup> S <sup>2</sup><br>QS <sup>2</sup> , P <sup>2</sup> QS <sup>2</sup><br>PQS <sup>2</sup> , P <sup>3</sup> QS <sup>2</sup> | 863<br>PRS <sup>3</sup> , P <sup>3</sup> QR <sup>3</sup> S <sup>3</sup><br>QRS <sup>3</sup> , P <sup>3</sup> QR <sup>3</sup> S <sup>3</sup><br>PQRS <sup>3</sup> , P <sup>3</sup> QR <sup>3</sup> S <sup>3</sup><br>P <sup>2</sup> RS <sup>2</sup> , P <sup>2</sup> R <sup>2</sup> S <sup>2</sup> | 8e4<br>R <sup>2</sup> S <sup>2</sup> , RS <sup>2</sup><br>PR <sup>2</sup> S <sup>2</sup> , P <sup>2</sup> QRS <sup>2</sup><br>QR <sup>2</sup> S <sup>2</sup> , P <sup>3</sup> QRS <sup>3</sup><br>PQR <sup>2</sup> S <sup>2</sup> , P <sup>3</sup> RS <sup>2</sup> | $2\epsilon_4$<br>$S^2T$<br>T                                                                                                                 | $2\epsilon_4$ $P^2S^2T$ $P^1T$                                                                                                               | $\begin{array}{c} 12 e_{1} \\ PT \\ QT \\ PQT \\ PS^{3}T \\ QS^{3}T \\ PQS^{3}T \\ P^{3}QS^{3}T \\ P^{3}QT \\ P^{3}QS^{3}T \\ P^{3}QS^{3}T \end{array}$ | Be <sub>12</sub><br>PRT<br>QRT<br>PQRT<br>P <sup>3</sup> R <sup>3</sup> S <sup>3</sup> T<br>P <sup>3</sup> R <sup>3</sup> S <sup>3</sup> T<br>P <sup>2</sup> QR <sup>3</sup> S <sup>3</sup> T | 8e <sub>11</sub><br>PQR <sup>1</sup> T<br>PR <sup>2</sup> T<br>QR <sup>2</sup> T<br>R <sup>3</sup> T<br>P <sup>1</sup> QRS <sup>3</sup> T<br>P <sup>5</sup> QRS <sup>2</sup> T<br>P <sup>5</sup> RS <sup>3</sup> T | 8611<br>P <sup>1</sup> R <sup>1</sup> T<br>P <sup>2</sup> QR <sup>1</sup> T<br>P <sup>2</sup> QR <sup>2</sup> T<br>PRS <sup>2</sup> T<br>QRS <sup>2</sup> T<br>P <sup>2</sup> RS <sup>2</sup> T | 8611<br>P <sup>1</sup> QRT<br>P <sup>2</sup> QRT<br>P <sup>3</sup> RT<br>PQR <sup>2</sup> S <sup>2</sup> T<br>PR <sup>4</sup> S <sup>2</sup> T<br>QR <sup>2</sup> S <sup>2</sup> T<br>R <sup>3</sup> S <sup>2</sup> T | 24e4<br>ST, P <sup>3</sup> ST<br>PQST, P <sup>3</sup> QST<br>R <sup>3</sup> ST, P <sup>3</sup> R <sup>3</sup> ST<br>PR <sup>3</sup> ST, P <sup>3</sup> R <sup>3</sup> ST<br>QRST, P <sup>3</sup> QRST<br>P <sup>3</sup> RST, RST<br>S <sup>3</sup> T, P <sup>2</sup> S <sup>3</sup> T<br>PQS <sup>3</sup> T, P <sup>3</sup> QS <sup>3</sup> T<br>R <sup>3</sup> S <sup>3</sup> T, P <sup>3</sup> QS <sup>3</sup> T<br>PR <sup>3</sup> S <sup>3</sup> T, P <sup>3</sup> QRS <sup>3</sup> T<br>P <sup>3</sup> RS <sup>3</sup> T, RS <sup>3</sup> T | 126<br>PST, P <sup>2</sup> QST<br>PQRST, P <sup>2</sup> QST<br>QR <sup>3</sup> ST, P <sup>2</sup> QS <sup>3</sup> T<br>PQRS <sup>3</sup> T, P <sup>2</sup> QS <sup>3</sup> T<br>PQR <sup>3</sup> S <sup>3</sup> T, P <sup>3</sup> QR <sup>3</sup> S <sup>3</sup> T<br>QR <sup>4</sup> S <sup>3</sup> T, P <sup>3</sup> QR <sup>4</sup> S <sup>3</sup> T | 12e <sub>8</sub><br>QST, P <sup>3</sup> ST<br>PRST, P <sup>3</sup> QRST<br>PQR <sup>2</sup> ST, P <sup>3</sup> QR <sup>3</sup> ST<br>QS <sup>3</sup> T, P <sup>3</sup> QR <sup>3</sup> S <sup>3</sup> T<br>PRS <sup>3</sup> T, P <sup>3</sup> QR <sup>5</sup> S <sup>3</sup> T<br>PQR <sup>2</sup> S <sup>3</sup> T, P <sup>2</sup> QR <sup>2</sup> S <sup>3</sup> T | 192 elements<br>$P^4 = Q^4 = R^3 = S^4 = T^4 = E$<br>$P^2 = Q^3 = T^2$<br>$QP = P^3Q; RP = QR; RQ = PQR$<br>$SP = P^2QS; SQ = P^3S; SR = R^3S$<br>TP = PT; TQ = QT; TR = RT'<br>$TS = S^3T$ |
| ROYAL MATHEMATICAL,<br>MATHEMATICAL,<br>PHYSICAL MATHEMATICAL,<br>REVEALED SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES<br>SCIENCES | 4       | 1<br>2<br>3<br>-4<br>-4 | $     \begin{array}{c}       1 \\       2 \\       3 \\       3 \\       1 \\       2 \\       3 \\       4 \\       4 \\       4 \\       4   \end{array} $ | 3<br>1<br>2<br>3<br>3<br>4<br>4 | $     \begin{array}{c}       1 \\       2 \\       -1 \\       -1 \\       1 \\       2 \\       -1 \\       -1 \\       -1 \\       -1 \\       0 \\       0     \end{array} $ | $     \begin{array}{c}       1 \\       1 \\       -1 \\       0 \\       0 \\       1 \\       -1 \\       0 \\       0 \\       2 \\       -1 \\       \end{array} $           | $ \begin{array}{r} 1 \\ -1 \\ 0 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ -2 \\ 1 \end{array} $                                                             | $ \begin{array}{r} 1 \\ -1 \\ 0 \\ -1 \\ 1 \\ -1 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{array} $                                                                                                                                                                                                                                                                                       | $     \begin{bmatrix}       1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       -1 \\       0 \\       1 \\       -1 \\       0 \\       0 \\       0     $                                                                                                                        | $ \begin{array}{r}1\\1\\2\\-1\\-1\\-1\\1\\2\\-1\\-1\\0\\0\end{array}$                                                                                           | $ \begin{array}{r} 1 \\ -1 \\ 0 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ 2 \\ -1 \\ \end{array} $                                                                                                                                                                                                             | $     \begin{array}{r}             1 \\             1 \\         $                                                                                                                                                                                                 | $     \begin{array}{r}       1 \\       2 \\       3 \\       -1 \\       -2 \\       -3 \\       -3 \\       0 \\       0     \end{array} $ | $     \begin{array}{r}       1 \\       2 \\       3 \\       -1 \\       -2 \\       -3 \\       -3 \\       0 \\       0     \end{array} $ | 1<br>2<br>-1<br>-1<br>-1<br>-2<br>1<br>0<br>0                                                                                                           | $     \begin{bmatrix}       1 \\       1 \\       -1 \\       0 \\       -1 \\       -1 \\       -1 \\       1 \\       0 \\       0 \\       -i\sqrt{3}     \end{bmatrix} $                  | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ -1 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ i \sqrt{3} \end{array} $                                                                                                                  | $ \begin{array}{c} 1 \\ -1 \\ 0 \\ -1 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \\ -i\sqrt{3} \end{array} $                                                                                                    | 1<br>-1<br>0<br>0<br>-1<br>-1<br>1<br>0<br>0<br>0<br>$i\sqrt{3}$                                                                                                                                                      | $ \begin{array}{r} 1 \\ -1 \\ 0 \\ -1 \\ 1 \\ -1 \\ 1 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>-1<br>0<br>1<br>-1<br>-1<br>-1<br>1<br>0<br>-1<br>1<br>0<br>0<br>0                                                                                                                                                                                                                                                                                 | $ \begin{array}{r}     1 \\     -1 \\     0 \\     1 \\     -1 \\     -1 \\     1 \\     0 \\     -1 \\     1 \\     0 \\     0 \\     0 \\   \end{array} $                                                                                                                                                                                                          | $ \left. \begin{array}{l} \alpha = +1; \ \beta = +1 \\ \alpha = -1; \ \beta = +1 \end{array} \right. $                                                                                      |
| PHILOSOPHICAL THE RC<br>TRANSACTIONS SOCIE<br>OF<br>SOCIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 2 2 6 | 2<br>2<br>2             | -6 -<br>-2<br>-2<br>-2<br>-2<br>-2<br>-2                                                                                                                     | 22262224                        | 0<br>2<br>2<br>2<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                   | $     \begin{array}{r}       -1 \\       2 \\       -1 \\       -1 \\       0 \\       1 \\       1 \\       1 \\       -1 \\       -1 \\       -1 \\       -1     \end{array} $ | $ \begin{array}{c} 1\\ 2\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ 1\\ 1 \end{array} $                                                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ -i\sqrt{2} \\ i\sqrt{2} \\ i\sqrt{2} \\ -i\sqrt{2} \\ 0 \\ 0 \end{array} $                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ i\sqrt{2} \\ -i\sqrt{2} \\ -i\sqrt{2} \\ i\sqrt{2} \\ 0 \\ 0 \end{array}$                                                                                                                                                                                                   | $ \begin{array}{c} 0 \\ -2 \\ -2 \\ -2 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                  | $     \begin{array}{r}       -1 \\       -2 \\       1 \\       1 \\       0 \\       -1 \\       -1 \\       -1 \\       -1 \\       1 \\       1     \end{array} $                                                                                                                              | $ \begin{array}{c} 1 \\ -2 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ -1 \\ -1 \\ -1 \end{array} $                                                                                                                                                                                | 0<br>0<br>0<br>2i<br>- 2i<br>2i<br>- 2i<br>4i<br>- 4i                                                                                        | 0<br>0<br>0<br>-2i<br>2i<br>-2i<br>2i<br>-4i<br>4i                                                                                           | 000000000000000000000000000000000000000                                                                                                                 | $i\sqrt{3}$<br>0<br>$-i\sqrt{3}$<br>$i\sqrt{3}$<br>0<br>-i<br>-i<br>-i<br>-i<br>i                                                                                                             | $-i\sqrt{3}$<br>0<br>$i\sqrt{3}$<br>$-i\sqrt{3}$<br>0<br>-i<br>i<br>-i<br>i<br>-i<br>-i                                                                                                                            | $i\sqrt{3}$<br>0<br>$i\sqrt{3}$<br>$-i\sqrt{3}$<br>0<br>i<br>-i<br>-i<br>-i<br>-i<br>i                                                                                                          | $-i\sqrt{3}$<br>0<br>$-i\sqrt{3}$<br>$i\sqrt{3}$<br>0<br>-i<br>i<br>-i<br>i<br>-i<br>-i                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                                                     | $ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -\sqrt{2} \\ -\sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \\ 0 \\ 0 \end{array} $                                                                                                                                                                                                                                                   | $\begin{cases} x = +1; \beta = -1 \\ \\ \alpha = -1; \beta = -1 \end{cases}$                                                                                                                |
| HAT O'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E       |                         |                                                                                                                                                              |                                 | A<br>B<br>AB                                                                                                                                                                    | AC<br>BC<br>ABC                                                                                                                                                                  | C <sup>3</sup> , C<br>AC <sup>3</sup><br>BC <sup>3</sup><br>ABC <sup>2</sup>                                                                   | D<br>ABD<br>C <sup>a</sup> D<br>AC <sup>a</sup> D<br>BCD<br>CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AD<br>ABCD<br>BC <sup>a</sup> D                                                                                                                                                                                                                                                                                                                                                          | BD<br>ACD<br>ABCªD                                                                                                                                                                                                                                                                                                |                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                    | Ι                                                                                                                                            |                                                                                                                                              | AI<br>BI<br>ABI                                                                                                                                         | ACI<br>BCI<br>ABCI                                                                                                                                                                            |                                                                                                                                                                                                                    | C <sup>3</sup> I<br>AC <sup>3</sup> I<br>ABC <sup>3</sup> I                                                                                                                                     | CI                                                                                                                                                                                                                    | DI<br>ABDI<br>CªDI<br>ACªDI<br>BCDI<br>CDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ADI<br>ABCDI<br>BCªDI                                                                                                                                                                                                                                                                                                                                   | BDI<br>ACDI<br>ABCªDI                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{l} A^{3}=B^{3}=C^{3}=D^{2}=I^{2}=E\\ BA=AB;CA=BC;CB=ABC\\ DA=BD;DB=AD;DC=C^{2}D;\\ IA=AI;IB=BI;IC=CI;\\ ID=DI \end{array}$                                                   |

|                              |                                                |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                     | TABLE 3 (cont.)                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                             |
|------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| <i>₹</i> ( <i>I</i> )        | E E                                            | $P^2$                                                                                                                      | 30¢4<br>P, P <sup>3</sup><br>Q, P <sup>2</sup> Q<br>PQ, P <sup>3</sup> Q<br>PV, P <sup>3</sup> V<br>PV <sup>2</sup> , P <sup>3</sup> V <sup>2</sup><br>PV <sup>3</sup> , P <sup>3</sup> V <sup>2</sup><br>PV <sup>3</sup> , P <sup>3</sup> V <sup>2</sup><br>PV <sup>3</sup> , P <sup>3</sup> V <sup>2</sup><br>PRV <sup>3</sup> , P <sup>3</sup> RV <sup>2</sup><br>PRV <sup>3</sup> , P <sup>3</sup> RV <sup>2</sup><br>PQRV <sup>4</sup> , P <sup>3</sup> QRV <sup>4</sup><br>PQR <sup>4</sup> V <sup>3</sup> , P <sup>2</sup> QR <sup>4</sup> V <sup>2</sup><br>R <sup>2</sup> V <sup>4</sup> , P <sup>2</sup> RV <sup>4</sup><br>QRV <sup>3</sup> , P <sup>2</sup> QRV <sup>3</sup><br>QR <sup>2</sup> V, P <sup>2</sup> QR <sup>2</sup> V | 2066<br>PR, P <sup>3</sup> QR <sup>3</sup><br>QR, P <sup>3</sup> R <sup>2</sup><br>PQR, P <sup>2</sup> QR <sup>3</sup><br>PQR <sup>2</sup> V, PR <sup>2</sup> V <sup>4</sup><br>QV, R <sup>2</sup> V <sup>3</sup><br>PQV <sup>3</sup> , P <sup>3</sup> RV <sup>4</sup><br>QR <sup>2</sup> V <sup>2</sup> , P <sup>2</sup> QV <sup>4</sup><br>RV <sup>3</sup> , P <sup>3</sup> QRV <sup>3</sup><br>P <sup>2</sup> R, P <sup>2</sup> R <sup>2</sup><br>P <sup>2</sup> QRV, P <sup>3</sup> QV <sup>3</sup> | $20\epsilon_{3}$<br>$R, R^{3}$<br>$PR^{2}, P^{2}QR$<br>$PQR^{3}, P^{3}R$<br>$QR^{2}, P^{3}QR$<br>$QV^{4}, P^{2}QR^{2}V^{2}$<br>$PQV^{2}, QRV$<br>$PQRV^{3}, P^{3}RV^{2}$<br>$PRV^{4}, P^{3}QV^{3}$<br>$P^{2}QV, P^{2}R^{4}V^{3}$<br>$P^{3}R^{3}V^{4}, P^{3}QR^{2}V$ | 1264<br>V, V <sup>4</sup><br>QV <sup>2</sup> , P <sup>2</sup> RV <sup>4</sup><br>RV <sup>3</sup> , P <sup>2</sup> QR <sup>4</sup> V <sup>4</sup><br>PQRV, P <sup>4</sup> QV <sup>3</sup><br>R <sup>4</sup> V <sup>3</sup> , QR <sup>2</sup> V <sup>3</sup><br>P <sup>3</sup> R <sup>3</sup> V, P <sup>3</sup> QRV <sup>3</sup> | 12e <sub>6</sub><br>V <sup>2</sup> , V <sup>2</sup><br>PQV, P <sup>3</sup> QR <sup>4</sup> V <sup>2</sup><br>QRV <sup>2</sup> , PQR <sup>4</sup> V <sup>4</sup><br>PRV <sup>3</sup> , PR <sup>2</sup> V<br>P <sup>3</sup> RV, P <sup>2</sup> QRV <sup>4</sup><br>P <sup>3</sup> R <sup>4</sup> V <sup>2</sup> , P <sup>3</sup> QV <sup>4</sup> | $12e_{10}$<br>$QV^3, P^3QRV$<br>$R^2V, PQRV^2$<br>$RV^4, P^2QV^2$<br>$QR^3V^4, P^3RV^3$<br>$P^2V, P^2V^4$<br>$P^3R^3V^3, P^3QR^4V^3$ | 126 <sub>19</sub><br>PRV, QRV <sup>4</sup><br>PR <sup>2</sup> V <sup>3</sup> , PQV <sup>4</sup><br>PQR <sup>2</sup> V <sup>2</sup> , P <sup>3</sup> QV<br>P <sup>2</sup> QRV <sup>2</sup> , P <sup>3</sup> QR <sup>2</sup> V <sup>4</sup><br>P <sup>2</sup> QRV <sup>2</sup> , P <sup>3</sup> QR <sup>2</sup> V <sup>4</sup><br>P <sup>3</sup> R <sup>2</sup> V, P <sup>3</sup> RV <sup>3</sup> | 120 elements<br>$P^4 = Q^4 = R^3 = V^5 = E$<br>$Q^2 = P^2$<br>$QP = P^3Q; RP = QR$<br>$RQ = PQR; VP = PV^4$<br>$VQ = QR^2V^2; VR = P^2R^3V$ |
| A T <sub>1</sub> C H E E C A | $1 \\ 3 \\ 3 \\ 4 \\ 5 \\ 2 \\ 2 \\ 4 \\ 6 \\$ | $     \begin{array}{r}       1 \\       3 \\       4 \\       5 \\       -2 \\       -4 \\       -6 \\       \end{array} $ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>0<br>1<br>-1<br>1<br>1<br>-1<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I<br>0<br>0<br>1<br>-1<br>-1<br>-1<br>-1<br>0                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{c} 1 \\ \Phi \\ \Phi^{-1} \\ -1 \\ 0 \\ \Phi \\ -\Phi^{-1} \\ 1 \\ -1 \end{array} $                                  |                                                                                                                                                                                                                                                                                                                                                                                                 | $\alpha = +1$<br>$\alpha = -1$                                                                                                              |
| I                            | E                                              |                                                                                                                            | A<br>B<br>AB<br>AF<br>AF <sup>2</sup><br>AF <sup>3</sup><br>AF <sup>4</sup><br>ACF <sup>2</sup><br>AC <sup>3</sup> F <sup>3</sup><br>ABCF <sup>4</sup><br>ABC <sup>5</sup> F <sup>3</sup><br>CF<br>C <sup>3</sup> F <sup>4</sup><br>BCF <sup>3</sup><br>BC <sup>2</sup> F                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AC<br>BC<br>ABC<br>ABC <sup>3</sup> F, AC <sup>3</sup> F <sup>4</sup><br>BF, C <sup>3</sup> F <sup>3</sup><br>BF <sup>3</sup><br>BC <sup>3</sup> F <sup>2</sup><br>CF <sup>2</sup>                                                                                                                                                                                                                                                                                                                      | C, C <sup>‡</sup><br>AC <sup>3</sup><br>ABC <sup>2</sup><br>BC <sup>3</sup><br>BF <sup>4</sup><br>ABF <sup>3</sup> , BCF<br>ABCF <sup>3</sup><br>ACF <sup>4</sup>                                                                                                   | F, F <sup>4</sup><br>BF <sup>2</sup><br>CF <sup>3</sup><br>ABCF<br>C <sup>2</sup> F <sup>2</sup> , BC <sup>2</sup> F <sup>2</sup>                                                                                                                                                                                              | F <sup>2</sup> , F <sup>3</sup><br>ABF<br>BCF <sup>3</sup> , ABC <sup>2</sup> F <sup>4</sup><br>ACF <sup>3</sup> , AC <sup>3</sup> F                                                                                                                                                                                                           | BF <sup>3</sup><br>C <sup>3</sup> F, ABCF <sup>3</sup><br>CF <sup>4</sup><br>BC <sup>3</sup> F <sup>4</sup>                          | ACF, BCF <sup>4</sup><br>AC <sup>2</sup> F <sup>3</sup> , ABV <sup>4</sup><br>ABC <sup>2</sup> F <sup>2</sup>                                                                                                                                                                                                                                                                                   | $A^{3} = B^{4} = C^{3} = F^{5} = E$<br>BA = AB; CA = BC<br>$CB = ABC; FA = AF^{4}$<br>$FB = BC^{3}F^{2}; FC = C^{3}F^{4}$<br>$F^{2}C = BF$  |

 $\triangleleft$ 

| R.(I.)                                                                                            | $= \Re(I) \times \{E\}$                              | <i>T</i> }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                            | :                                                                                                                                                                                                                                                                                                        | TABLE 3 (cont.)                                                                                                                                                                                                                                                                                                                              |                                                                                                |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                   | 1e1 1e2                                              | 3064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $20c_{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $20e_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $12c_5$                                                                                                                                                                                                                                                                                                                | $12\epsilon_{5}$                                                                                                                                                                                                                                                                                                           | $12e_{10}$                                                                                                                                                                                                                                                                                               | $12e_{10}$                                                                                                                                                                                                                                                                                                                                   | $1e_4$                                                                                         | $1e_4$                                                                                             | 30e <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $20e_{13}$                                                                                                                                                                                   | $20\epsilon_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $12e_{\rm 20}$                                                                                                                                                           | $12e_{20}$                                                                                                                                                                                                                                                                                                                                                                                             | $12e_{20}$                                                                                                                                                                                                                                                | $12e_{\mathtt{D}\mathtt{0}}$                                                                                                                                                                                                                                                                                                                          | 240 elements                                                                                                                                                                                      |
| PHILOSOPHICAL THE ROYAL A MATHEMATICAL,<br>TRANSACTIONS SOCIETY & ENGINEERING<br>SCIENCES         | E P <sup>‡</sup>                                     | P, P <sup>3</sup><br>Q, P <sup>2</sup> Q<br>PQ, P <sup>2</sup> Q<br>PV, P <sup>3</sup> V<br>PV <sup>3</sup> , P <sup>3</sup> V <sup>2</sup><br>PV <sup>3</sup> , P <sup>3</sup> V <sup>2</sup><br>PV <sup>3</sup> , P <sup>3</sup> V <sup>2</sup><br>PV <sup>3</sup> , P <sup>3</sup> V <sup>2</sup><br>PR <sup>3</sup> V <sup>2</sup> , P <sup>3</sup> R <sup>3</sup> V <sup>3</sup><br>PR <sup>3</sup> V <sup>2</sup> , P <sup>3</sup> R <sup>3</sup> V <sup>3</sup><br>PQR <sup>4</sup> V, P <sup>3</sup> QR <sup>4</sup> V <sup>3</sup><br>PQR <sup>4</sup> V <sup>3</sup> , P <sup>3</sup> QR <sup>4</sup> V <sup>3</sup><br>RV, P <sup>3</sup> RV<br>R <sup>2</sup> V <sup>3</sup> , P <sup>3</sup> QRV <sup>3</sup><br>QR <sup>2</sup> V, P <sup>2</sup> QR <sup>2</sup> V | PR, P <sup>a</sup> QR <sup>a</sup><br>QR, P <sup>a</sup> R <sup>a</sup><br>PQR, P <sup>a</sup> QR <sup>a</sup><br>PQR <sup>a</sup> V, PR <sup>a</sup> V <sup>a</sup><br>QV, R <sup>a</sup> V <sup>a</sup><br>PQV <sup>3</sup> , P <sup>a</sup> RV <sup>a</sup><br>QR <sup>a</sup> V <sup>a</sup> , P <sup>a</sup> QV <sup>a</sup><br>RV <sup>z</sup> , P <sup>a</sup> QRV <sup>a</sup><br>P <sup>a</sup> R, P <sup>a</sup> R <sup>a</sup><br>P <sup>a</sup> QRV, P <sup>a</sup> QV <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R, R <sup>a</sup><br>PR <sup>a</sup> , P <sup>a</sup> QR<br>PQR <sup>a</sup> , P <sup>a</sup> R<br>QR <sup>a</sup> , P <sup>a</sup> QR<br>QV <sup>a</sup> , P <sup>a</sup> QR <sup>a</sup> V <sup>a</sup><br>PQV <sup>3</sup> , QRV<br>PQRV <sup>3</sup> , P <sup>a</sup> RV <sup>a</sup><br>PRV <sup>4</sup> , P <sup>a</sup> QV <sup>3</sup><br>P <sup>a</sup> QV, P <sup>a</sup> R <sup>3</sup> V <sup>3</sup><br>P <sup>a</sup> R <sup>a</sup> V <sup>4</sup> , P <sup>a</sup> QR <sup>a</sup> V | V, V <sup>4</sup><br>QV <sup>2</sup> , P <sup>2</sup> RV <sup>4</sup><br>RV <sup>3</sup> , P <sup>2</sup> QR <sup>2</sup> V <sup>4</sup><br>PQRV, P <sup>2</sup> QV <sup>3</sup><br>R <sup>2</sup> V <sup>2</sup> , QR <sup>2</sup> V <sup>3</sup><br>P <sup>3</sup> R <sup>2</sup> V, P <sup>3</sup> QRV <sup>2</sup> | V <sup>2</sup> , V <sup>2</sup><br>PQV, P <sup>3</sup> QR <sup>2</sup> V <sup>2</sup><br>QRV <sup>3</sup> , PQR <sup>2</sup> V <sup>4</sup><br>PRV <sup>3</sup> , PR <sup>3</sup> V<br>P <sup>3</sup> RV, P <sup>2</sup> QRV <sup>4</sup><br>P <sup>3</sup> R <sup>9</sup> V <sup>5</sup> , P <sup>3</sup> QV <sup>4</sup> | QV <sup>5</sup> , P <sup>3</sup> QRV<br>R <sup>2</sup> V, PQRV <sup>3</sup><br>RV <sup>4</sup> , P <sup>3</sup> QV <sup>2</sup><br>QR <sup>2</sup> V <sup>4</sup> , P <sup>3</sup> QV <sup>3</sup><br>P <sup>3</sup> V, P <sup>2</sup> V <sup>4</sup><br>P <sup>3</sup> V, P <sup>2</sup> V <sup>4</sup> | PRV, QRV <sup>4</sup><br>PR <sup>2</sup> V <sup>3</sup> , PQV <sup>4</sup><br>PQR <sup>1</sup> V <sup>3</sup> , P <sup>3</sup> QV<br>P <sup>3</sup> V <sup>3</sup> , P <sup>3</sup> QV<br>P <sup>3</sup> QRV <sup>2</sup> , P <sup>3</sup> QR <sup>2</sup> V <sup>4</sup><br>P <sup>3</sup> R <sup>2</sup> V, P <sup>3</sup> RV <sup>3</sup> | T                                                                                              | $P^{*}T$                                                                                           | $\begin{array}{c} PT\\ P^{3}T\\ QT\\ P^{4}QT\\ PQT\\ PQT\\ PQT\\ P^{3}QT\\ PVT\\ P^{3}VT\\ P^{3}V^{3}T\\ PV^{3}T\\ P^{3}V^{3}T\\ PV^{3}T\\ P^{3}V^{3}T\\ PV^{4}T\\ P^{3}V^{3}T\\ P^{3}R^{3}V^{2}T\\ P^{3}R^{3}V^{2}T\\ P^{3}R^{3}V^{2}T\\ P^{3}QRV^{4}T\\ P^{3}QRV^{4}T\\ P^{3}QR^{3}V^{3}T\\ R^{2}V^{4}T\\ P^{3}R^{2}V^{4}T\\ P^{3}QRV^{3}T\\ P^{3}QRV^{3}T\\ P^{3}QRV^{3}T\\ QRV^{3}T\\ P^{2}QR^{3}VT\\ P^{2}QR^{3}VT\\ P^{2}QR^{3}VT\\ P^{2}QR^{3}VT\\ P^{3}QR^{3}VT\\ P^{3}QR^{3}VT$ | PRT<br>QRT<br>PQRT<br>PQR*VT<br>QVT<br>PQV*T<br>QV*T<br>P*RT<br>P*RT<br>P*QR*T<br>P*QR*T<br>P*QR*T<br>P*QR*T<br>P*QR*T<br>P*QR*T<br>P*QV*T<br>P*QV*T<br>P*QV*T<br>P*QV*T<br>P*QV*T<br>P*QV*T | PQR <sup>2</sup> T<br>PR <sup>3</sup> T<br>QR <sup>2</sup> T<br>P <sup>3</sup> R <sup>2</sup> V <sup>3</sup> T<br>PRV <sup>4</sup> T<br>PRV <sup>4</sup> T<br>QV <sup>4</sup> T<br>PQRV <sup>3</sup> T<br>R <sup>2</sup> T<br>P <sup>3</sup> QR <sup>3</sup> T<br>P <sup>3</sup> QR <sup>3</sup> T<br>P <sup>3</sup> QR <sup>3</sup> T<br>P <sup>3</sup> QR <sup>2</sup> V <sup>3</sup> T<br>P <sup>3</sup> QR <sup>2</sup> V <sup>2</sup> T<br>P <sup>3</sup> QR <sup>2</sup> V <sup>2</sup> T<br>P <sup>3</sup> RV <sup>2</sup> T<br>RT<br>QRVT | VT<br>V*T<br>QV*T<br>P*RV*T<br>RV*T<br>P*QR*V*T<br>P*QR*V*T<br>P*QV*T<br>QR*V*T<br>P*QRV*T<br>P*QRV*T                                                                    | P <sup>1</sup> V <sup>4</sup> T<br>P <sup>2</sup> VT<br>RV <sup>4</sup> T<br>P <sup>2</sup> QV <sup>2</sup> T<br>QR <sup>4</sup> V <sup>4</sup> T<br>P <sup>3</sup> RV <sup>3</sup> T<br>P <sup>3</sup> QR <sup>4</sup> V <sup>3</sup> T<br>P <sup>3</sup> QR <sup>4</sup> V <sup>3</sup> T<br>P <sup>3</sup> R <sup>4</sup> V <sup>3</sup> T<br>P <sup>2</sup> RV <sup>3</sup> T<br>R <sup>4</sup> VT | V <sup>2</sup> T<br>V <sup>3</sup> T<br>PQVT<br>P <sup>3</sup> QR <sup>2</sup> V <sup>2</sup> T<br>QRV <sup>2</sup> T<br>PQR <sup>3</sup> V <sup>3</sup> T<br>PR <sup>3</sup> VT<br>P <sup>3</sup> QRV <sup>4</sup> T<br>P <sup>3</sup> QV <sup>4</sup> T | P <sup>a</sup> V <sup>a</sup> T<br>P <sup>a</sup> V <sup>a</sup> T<br>PQR <sup>a</sup> V <sup>a</sup> T<br>P <sup>a</sup> QR <sup>y</sup> V <sup>a</sup> T<br>P <sup>a</sup> QRV <sup>a</sup> T<br>P <sup>a</sup> R <sup>a</sup> VT<br>P <sup>a</sup> RV <sup>a</sup> T<br>PR <sup>v</sup> T<br>PR <sup>v</sup> T<br>PR <sup>a</sup> V <sup>a</sup> T | $P^{4} = Q^{4} = R^{3} = V^{b} = T^{4} = E$ $P^{3} = Q^{a} = T^{3}$ $QP = P^{3}Q; RP = QR$ $RQ = PQR; VP = PV^{4}$ $VQ = QR^{a}V^{b}; VR = P^{3}R^{a}V^{4}$ $TP = PT; TQ = QT$ $TR = RT; TV = VT$ |
| THE ROYAL MATHEMATICAL,<br>SOCIETY & MATHEMATICAL,<br>SOCIETY & SCIENCES<br>I 0000XXX9555559H9544 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c} 1 \\ -1 \\ -1 \\ 0 \\ 1 \\ 1 \\ -1 \\ -1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c} 1 \\ 0 \\ 0 \\ 1 \\ -1 \\ 1 \\ 0 \\ 0 \\ 1 \\ -1 \\ 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ 0 \\ 0 \\ 0 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ -1 \\ 1 \\ 0 \\ 0 \\ 1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{array} $                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{c} 1 \\ \phi \\ \phi^{-1} \\ -1 \\ 0 \\ 1 \\ \phi \\ \phi^{-1} \\ -1 \\ 0 \\ -\phi \\ -\phi \\ -\phi \\ -\phi \\ -1 \\ -1 \\ -1 \\ 1 \\ 1 \end{array} $                                                                                                                                                | $ \begin{array}{c} 1 \\ \phi^{-1} \\ \phi \\ -1 \\ 0 \\ 1 \\ \phi^{-1} \\ \phi \\ -1 \\ 0 \\ -\phi^{-1} \\ -\phi^{-1} \\ \phi \\ -1 \\ -1 \\ 1 \\ 1 \end{array} $                                                                                                                                                          | $ \begin{array}{c} 1 \\ \phi \\ \phi^{-1} \\ -1 \\ 0 \\ 1 \\ \phi \\ \phi^{-1} \\ -1 \\ -1 \\ 0 \\ \phi \\ \phi \\ -\phi^{-1} \\ -\phi^{-1} \\ -\phi^{-1} \\ 1 \\ 1 \\ -1 \\ -1 \\ -1 \end{array} $                                                                                                      | $ \begin{array}{c} 1 \\  & \Phi^{-1} \\  & -\Phi \\  & -\Phi \\  & 1 \\  & 1 \\  & -1 \\  & -1 \\  & -1 \\  & -1 \end{array} $                                                                                                                               | 1<br>3<br>4<br>5<br>-1<br>-3<br>-3<br>-4<br>-5<br>2i<br>-2i<br>-2i<br>-2i<br>-4i<br>-6i<br>-6i | 1<br>3<br>4<br>5<br>-1<br>-3<br>-3<br>-4<br>-5<br>-2i<br>2i<br>-2i<br>2i<br>-4i<br>4i<br>-6i<br>6i | $ \begin{array}{c} 1 \\ -1 \\ -1 \\ 0 \\ 1 \\ -1 \\ 1 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>0<br>0<br>1<br>-1<br>-1<br>0<br>0<br>-1<br>1<br>i<br>-i<br>i<br>-i<br>i<br>0<br>0<br>0                                                                                                  | 1<br>0<br>0<br>1<br>-1<br>-1<br>0<br>0<br>-1<br>1<br>-i<br>i<br>i<br>i<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{c} 1 \\ \phi \\ \phi^{-1} \\ -1 \\ 0 \\ -1 \\ -\phi^{-1} \\ 1 \\ 0 \\ -i\phi^{-1} \\ -i\phi^{-1} \\ -i\phi^{-1} \\ -i \\ -i \\ -i \\ -i \\ \end{array} $ | $ \begin{array}{c} 1 \\                                   $                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{c} 1 \\ \phi \\ \phi^{-1} \\ -1 \\ -0 \\ -1 \\ -\phi^{-1} \\ 1 \\ 0 \\ -i\phi^{-1} \\ i\phi^{-1} \\ i\phi \\ -i\phi \\ i \\ -i \\ -i \\ i \\ i \\ \end{array} $                                                                           | $ \begin{array}{c} 1 \\ \phi^{-1} \\ \phi \\ -1 \\ 0 \\ -1 \\ -\phi^{-1} \\ -\phi \\ 1 \\ 0 \\ i\phi^{-1} \\ -i\phi \\ i\phi \\ i \\ -i \\ -i \\ i \\ i \\ \end{array} $                                                                                                                                                                              | $\left. \begin{array}{c} \alpha = +1 \\ \alpha = -1 \end{array} \right  $                                                                                                                         |
| PHILOSOPHICAL THI<br>TRANSACTIONS SOC<br>OF                                                       | Ε                                                    | A<br>B<br>AB<br>AF<br>AF <sup>a</sup><br>AF <sup>a</sup><br>AF <sup>a</sup><br>ACF <sup>a</sup><br>AC <sup>a</sup> F <sup>a</sup><br>ABC <sup>a</sup> F <sup>a</sup><br>BCF <sup>a</sup><br>BC <sup>a</sup> F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{aligned} & AC \\ & BG \\ & ABC \\ & ABC^3F, AC^3F^4 \\ & BF, C^2F^3 \\ & ABF^3 \\ & BC^2F^2 \\ & CF^2 \end{aligned}$ $(\Phi = \frac{1}{2}(1 + \sqrt{5}); \Phi^{-1} = \frac{1}{2}(1 + \sqrt{5}$ | $C, C^{a}$<br>$AC^{a}$<br>$ABC^{a}$<br>$BC^{a}$<br>$BF^{4}$<br>$ABF^{a}, BCF$<br>$ABCF^{a}$<br>$ACF^{a}$<br>$ACF^{4}$                                                                                                                                                                                                                                                                                                                                                                                | F, F <sup>4</sup><br>BF <sup>2</sup><br>CF <sup>3</sup><br>ABCF<br>C <sup>2</sup> F <sup>2</sup> , BC <sup>2</sup> F <sup>3</sup>                                                                                                                                                                                      | F <sup>a</sup> , F <sup>a</sup><br>ABF<br>BCF <sup>a</sup> , ABC <sup>a</sup> F <sup>4</sup><br>ACF <sup>3</sup> , AC <sup>4</sup> F                                                                                                                                                                                       | BF <sup>a</sup><br>C <sup>a</sup> F, ABCF <sup>a</sup><br>CF <sup>4</sup><br>BC <sup>a</sup> F <sup>4</sup>                                                                                                                                                                                              | ACF, BCF4<br>AC <sup>3</sup> F <sup>3</sup> , ABF4<br>ABC <sup>3</sup> F <sup>3</sup>                                                                                                                                                                                                                                                        | 1                                                                                              |                                                                                                    | AI<br>BI<br>ABI<br>AFI<br>AF <sup>3</sup> I<br>AF <sup>3</sup> I<br>AF <sup>4</sup> I<br>AC <sup>3</sup> F <sup>3</sup> I<br>AC <sup>3</sup> F <sup>3</sup> I<br>ABC <sup>3</sup> F <sup>3</sup> I<br>CFI<br>C <sup>3</sup> F <sup>4</sup> I<br>BCF <sup>3</sup> I<br>BC <sup>3</sup> FI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ACI<br>BCI<br>ABCI<br>ABC <sup>3</sup> FI<br>BFI<br>ABF <sup>3</sup> I<br>BC <sup>3</sup> F <sup>3</sup> I<br>CF <sup>3</sup> I<br>C <sup>3</sup> F <sup>3</sup> I                           | ABC <sup>4</sup> I<br>AC <sup>3</sup> I<br>BC <sup>3</sup> I<br>ACF <sup>4</sup> I<br>BF <sup>4</sup> I<br>ABCF <sup>3</sup><br>C <sup>3</sup> I<br>ABF <sup>3</sup> I<br>CI<br>BCFI                                                                                                                                                                                                                                                                                                                                                              | FI<br>F <sup>4</sup> I<br>BF <sup>3</sup> I<br>CF <sup>3</sup> I<br>ABCFI<br>C <sup>3</sup> F <sup>3</sup> I<br>BC <sup>3</sup> F <sup>3</sup> I                         | CF4I<br>BC2F4I<br>BF3I<br>ABCF2I<br>C3FI                                                                                                                                                                                                                                                                                                                                                               | F <sup>3</sup> I<br>F <sup>3</sup> I<br>ABFI<br>BCF <sup>3</sup> I<br>ABC <sup>3</sup> F <sup>4</sup> I<br>ACF <sup>3</sup> I<br>AC <sup>3</sup> FI                                                                                                       | ABC <sup>3</sup> F <sup>3</sup> I<br>BCF <sup>4</sup> I<br>ACFI<br>ABF <sup>4</sup> I<br>AC <sup>3</sup> F <sup>3</sup> I                                                                                                                                                                                                                             | $A^{2} = B^{2} = C^{3} = F^{5} = I^{2} = E$<br>BA = AB; CA = BC<br>$CB = ABC; FA = AF^{4}$<br>$FB = BC^{2}F^{2}; FC = C^{2}F^{4}$<br>$F^{2}C = BF$<br>IA = AI; IB = B,<br>$IC = CI; IF = F_{4}$   |

Downloaded from rsta.royalsocietypublishing.org